
Globale Beleuchtungsberechnung mit Lightcuts

Diplomarbeit im Fach Informatik

vorgelegt von

Thomas Rudolf Kemmer

geb. am 29. Oktober 1980 in Miltenberg

angefertigt am

Institut f ür Informatik
Lehrstuhl f ür Graphische Datenverarbeitung

Friedrich-Alexander-Universit ät Erlangen-Nürnberg

Betreuer: Manfred Ernst

Betreuender Hochschullehrer: Prof. Dr. Marc Stamminger

Beginn der Arbeit: 22. Juni 2006

Abgabe der Arbeit: 08. Januar 2007

ii

Contents

1 Introduction 1
1.1 Idea of the Project .. 1
1.2 Goals and History of the Project .. 1
1.3 Previous Work . 2

1.3.1 Lightcuts: A Scalable Approach to Illumination 2
1.3.2 Multidimensional Lightcuts . 3
1.3.3 Notes on the Ward BRDF . 3
1.3.4 Median Cut Sampling for HDR Light Probes 3
1.3.5 Recovering High Dynamic Range Radiance Maps from Photographs 3

2 Fundamentals 5
2.1 Geometry . 5

2.1.1 Spheres and Spherical Coordinates .. . 5
2.1.2 Solid Angles . 6
2.1.3 Spherical Patches . 6

2.2 Ray Casting . 7
2.3 Ray Tracing . 7

2.3.1 The Rendering Equation . 8
2.3.2 Light Attenuation . 9
2.3.3 Bidirectional Surface Scattering Distribution Function (BSSDF) 10
2.3.4 Bidirectional Scattering Distribution Function (BSDF) 11
2.3.5 Bidirectional Reflectance Distribution Function (BRDF)11

2.4 Reflection Models . 12
2.4.1 Lambertion Reflection (perfect diffuse reflection) 12
2.4.2 Specular Reflection and Transmission . 12
2.4.3 Fresnel Equations . 13
2.4.4 Microfacet Models . 14

3 Illumination by Lightcuts 17
3.1 The Rendering Equation Revisited .. 17
3.2 The Lightcuts Algorithm . 18
3.3 Lightcuts Bounding Cluster Error Estimation .19
3.4 Light Tree . 20

iii

CONTENTS

3.4.1 Representative Lights . 21
3.4.2 Greedy Bottom-up Light Tree Generation 21
3.4.3 kd Light Tree . 23
3.4.4 kd Point Light Trie Construction . 23

3.5 Lightcuts in Action . 25

4 Bounding thecos θ 27
4.1 Algorithm for the Infinite Area Light Source 27
4.2 Mathematical Solution . 28

4.2.1 Bounding Cap Approximation . 31
4.2.2 Creation of a Tight Bounding Cap . 32
4.2.3 Algorithm for the oriented bounding box 33

5 Bounding the BRDF 37
5.1 Lambertian . 37
5.2 Oren-Nayar .38
5.3 Strategies for the Halfway Vector .. . 39

5.3.1 Bound For The Point Light Cluster . 40
5.3.2 Bound For The Directional Light Cap . 43
5.3.3 Microfacet Modell . 43

6 Algorithms for the Infinite Area Light Source 49
6.1 Fundamentals of Infinite Area Light Sources 49
6.2 Data Storage for Infinite Area Lights .. . 50
6.3 Median Cut Algorithm for Infinite Area Lights 50
6.4 Improving the Position of the Light Sources .. . 52

6.4.1 Centroid . 52
6.4.2 Random Sampling of the Spherical Patch 52
6.4.3 Dynamic Infinite Area Light for Lightcuts 54
6.4.4 Comparison of Dynamic Light Trees after Rendering 54

7 The PBRT Rendering System 57
7.1 General Overview .. 57
7.2 Integrators .58
7.3 Direct Lighting Integrator .. 58
7.4 Lightcuts Integrator Plugin .59

7.4.1 Preprocess() . 59
7.4.2 doLightcut() . 60
7.4.3 Helpers of the Lightcuts Integrator . 60

8 Results and Discussion 63
8.1 Benchmarks and Evaluation .63

8.1.1 Scenes with many Light Sources . 63
8.1.2 Modifying the Error Threshold . 66

iv

CONTENTS

8.1.3 Using Lightcuts for Optimal Area Light Sampling 67
8.1.4 Using Lightcuts for Infinite Area Lights . 67
8.1.5 The Sampling Weakness of the IAL . 69
8.1.6 Visualizing the Size of a Cut . 70

8.2 Conclusion . 71
8.3 Future Work . 72

A Source Code Snippets 73
A.1 Random Sampling of Spherical Patches .. . 73
A.2 kd-Trie Generation . 74
A.3 Lightcut Algorithm . 75

Bibliography 77

v

CONTENTS

vi

List of Figures

2.1 Spherical Patch. .. 7

2.2 The figure shows the general idea of recursive ray tracing. 8

2.3 Light attenuation for omni directional light sources. 10

2.4 Geometric effects caused by microfacets. 15

2.5 Halfway Vector. .16

3.1 The minimal distance between the surface positionp and the light clusterC is used to
calculate the geometric term’s upper bound. .20

3.2 Possible problems occurring by light clustering. 22

3.3 Overview of the construction algorithm of akd-trie: First, the split dimension is de-
termined, afterwards the split position. Regrouping of the elements to ensure, that
any element in the left branch has a smaller value with respect to the split dimension
compared to those in the right branch. A node is created and the algorithm calls itself
recursively for both branches. 24

4.1 The pointP is the normal direction of the hit surface. The red patch is the set of
considered incident light directionsωi. 27

4.2 alpha is the angle between the surface normalp and the incident light directionωi at
a surface location. The coordinate system is in world space. 28

4.3 The geodetic distance between a pointP and a spherical patchABCD is equal to the
included angle. 29

4.4 The green area marked with 1 can be treated in an efficient way. 30

4.5 Schematics for the bounding cap approximation. 31

4.6 The circumcircle of the△ ABC. 32

4.7 The surface normal is aligned with the z-axis. The bounding box C is anywhere but
subtending the z-axis. 34

4.8 Bounds for the point light cluster boxes. The xy-plane is mapped to the horizontal axis. 35

5.1 The incident light intervalθi and the viewing directionθo are used to bound the Oren-
Nayar BRDF. The minimum and maximum values are chosen to retrieve the maximum
BRDF term. 38

vii

LIST OF FIGURES

5.2 Two example plots of the Oren-Nayar bound with varying roughness (σ). In the left
figure the viewer’s direction in relation to the surface normal is very steep compared
the example on the right. 39

5.3 Incident radianceωi arrives from light clusterB. In combination with the viewing
directionωo a bunch of halfway vectorsωh is generated.θh is the interval of angles
betweenn andωh, whereasθ∗h is the interval of angles betweenωo andωh (compare
to figure 5.3. 40

5.4 A rotated coordinate system is used to boundθ∗h. ωo is used as z-axis, the surface
normal lies on the xz-plane. 41

5.5 Determining the maximum and minimum values forx andy leads to a bound for the
angleφ by using the Pythagorean equation. 42

5.6 Three example plots of the Fresnel term with different materials. The redcurve
demonstrates the amount of reflected parallel polarized light. The green curve is the
equivalent for perpendicular polarized light. The blue curve is the fresnel reflection
for unpolarized light. 45

5.7 The plots show the development of the first partial derivative with respect toθi for
the Fresnel term with different materials. The red curve demonstrates the amount of
reflected parallel polarized light. The green curve is the equivalent forperpendicular
polarized light. 47

6.1 Environment map with latitude-longitude mapping. 50

6.2 Split results obtained with the original median cut algorithm for light probe sampling. 50

6.3 Intervals for a pixel of a ll map. .. 51

6.4 Sunset radiance map. .. 55

6.5 Scene with two spheres illuminated by the sunset radiance-map. 55

6.6 Samples created by three different strategies. 56

7.1 Diagram for PBRT’s main rendering loop. 57

7.2 The diagram shows the class relationship of the Integrator abstraction.. 58

8.1 Three images showing a scene rendered with direct lighting and lightcuts.The maxi-
mum allowed error threshold was set to0.01. 65

8.2 Modulation of the error threshold leads to increasing error and thus reduced quality. . 66

8.3 The scene is rendered with an increasing number of light sources representing an area
light above the models. 67

8.4 Two shperes rendered with different sampling techniques using the daylight radiance
map. 68

8.5 Images rendered with importance sampling and lightcuts using the galileo radiance map. 69

8.6 Magnified image area to show the weakness of importance sampling with a fixed
sample count. The contrast of both images was slightly increased to visualize the
difference in the printout. 69

8.7 The image shows the IAL’s sample weakness due to high error threshold. 70

8.8 Point light scene cut size .. 70

viii

LIST OF FIGURES

8.9 Visualized cut size: brighter means more shadow rays. 71

ix

LIST OF FIGURES

x

List of Tables

2.1 Measured values for the indices of refraction. Values taken from [23]. 13
2.2 Measured example values for the indices of refraction and the absorption coefficients

of real materials. 14

8.1 Scene1, rendered in a resolution of 300x200. The object parameters used for the
spheres: Oren-Nayarσ = 0.15, Microfacet(Blinn)e = 45.3kr = (0.7, 0.7, 07)ks =

(0.5, 0.45, 0.35). 63
8.2 The settings are equal to those in in 8.1. The scene uses 10006 light sources. 66
8.3 Scene2, rendered in a resolution of 200x200 and an error threshold of 0.01. 67
8.4 Difference in rendering time for a high quality image. 68
8.5 Render statistics for lightcuts vs importance sampling. 68

xi

LIST OF TABLES

xii

Chapter 1

Introduction

1.1 Idea of the Project

Many photo-realistic rendering systems supporting global illumination were created until today. Most
of them use prominent algorithms like ray tracing, path tracing, radiosity and metropolis light trans-
port. The algorithms have in common the ability to simulate a complex illumination environment.
Among all of them ray tracing is supposed to be the first choice for modern scientific and commercial
rendering architectures. It can process highly detailed scenes due to itslogarithmic complexity. Ad-
ditionally, ray tracers can handle optical phenomena like diffuse global illumination and subsurface
scattering. During the last years, many theses and papers have been published with ideas to improve
ray tracing effects and its efficiency. There are several fields of optimizations regarding the ray tracing
algorithm. Many of them focus on efficient intersection testing which involvessophisticated space
subdivision methods. This thesis offers a different approach by usingan algorithm calledlightcuts. Its
main idea is to optimize rendering speed by reducing the number of necessaryshadow rays. This is
achieved by creating a hierarchical bounding structure for light sources in the scene.

1.2 Goals and History of the Project

The primary goal of my thesis is to implement thelightcutsalgorithm into a modern ray tracing system
and analyse its performance. I chose the ray tracing framework accompanying the ”Physically Based
Rendering” book from Matt Pharr and Grep Humphreys [22] due to its plugin structure and detailed
documentation. At the beginning I examined how ray tracing works within this system and solved
problems occurring when using version 4 of the g++ compiler. Then I started to create the lightcuts
integrator code which is based on PBRT’s direct lighting integrator. This implicates following steps
for each supported light source type:

• hierarchical clustering of light sources into light trees

• error estimation for light tree nodes

I started to implement the algorithm for point light sources. Therefore, a wrapper class for light trees
was generated, which should be an abstraction to be used by any kind of light type. To cluster the

1

CHAPTER 1. INTRODUCTION

lights I used the greedy clustering algorithm mentioned in the first lightcuts paper [28]. It performed
poorly and I soon realized it is not possible to optimize the bottom-to-top light clustering approach. As
a consequence I simply replaced it by a top-down clustering mechanism using thekd tree algorithm
which is explained in chapter 3. After this was accomplished, I started to think about how infinite area
light could be used by the lightcuts algorithm. The paper proposed to replacethe infinite area light by
a selection of distant lights. I thought it might be a better idea to dynamically generate distant lights,
because this would perfectly fit the dynamic nature of the lightcuts algorithm to descend the light tree
as far as necessary. I realized this by sampling the radiance map with an algorithm proposed by Paul
Debevec [8], which is described in 6. Any generated distant light represents a patch of directions on
the unit sphere. The directions are then used for error estimation in the lightcuts algorithm.

In dependency of the light type the maximum error has to be approximated by using a light cluster
instead of real lights. Therefore, I had to find the error’s upper bound introduced by using an interval
of incident light directions instead of a real light. The error estimation will be described in chapter 4
for thecos θ term and in chapter 5 for the BRDF models.. It was very complicated to find a bound for
the infinite area light source. Using a bounding cap offered a reasonable approximation with reduced
computational effort. In general, calculations with spheres are very difficult and end up easily with
large terms. Finally, it was possible to find a method to efficiently create bounding caps by reducing
the problem to a two dimensional case. The main challenge within my thesis was error estimation
for light tree nodes. I started with approximating the worst incident light direction and ended up with
bound for three BRDF models: Lambertian, Oren-Nayar and the Torrance-Sparrow microfacet model.
Especially Torrance-Sparrow was extremely complex due to its usage of thehalf-angle vector. In the
end I had a PBRT plugin which supports efficient rendering with a large number of light sources.

1.3 Previous Work

The following sections give a brief outline on the most influencial papers withrespect to my thesis.

1.3.1 Lightcuts: A Scalable Approach to Illumination

The lightcuts paper from Bruce Walter, Sebastian Fernandez et al. [28]firstly introduced a method
for calculating very complex illumination situations with strongly sublinear costs withrespect to the
participating light sources. At this level, their ray tracer could handle point lights, area lights, HDR
environment maps, sun/sky models and indirect illumination. The idea behind theinitial lightcuts
framework is to generate light clusters which are large amounts of individuallight sources incorpo-
rated by a bounding structure. This introduces an error to the final image.Therefore it is necessary
to find the error’s upper bound. Lighting is done by descending a hierarchical light tree and estimate
efficiently an upper bound for the error present at this level. The calculation is finished as soon as the
error falls below a previously defined threshold. The results demonstrated in the paper are impressive:
the reference renderer has to evaluate each participating light separately, which results in thousands
of shadow rays. On the contrary, the lightcuts method accomplishes to reduce the number of shadow
rays to a few hundreds per pixel. Despite the relatively small number of shadow rays, the example
renderings look very promising.

2

1.3. PREVIOUS WORK

1.3.2 Multidimensional Lightcuts

The succeeding paper to the previously mentioned lightcuts appeared at thisyear’s SIGGRAPH [27].
Bruce Walter et al. from Cornell University further improved their rendering engine and transported
the idea from illumination calculation to other domains. It was achieved to efficiently render rich vi-
sual effects such as motion blur, participating media, depth of field and spatial anti-aliasing. Therefore,
they used a method to discretize the integrals into sets of gather points and light points to adaptively
approximate the sum of all possible gather-light pair interactions. The given examples show a surpris-
ingly efficient rendering system which scales very well. This paper was the first to mention the usage
of a kd tree algorithm for building the light tree. In comparison to the previous lightcuts greedy tree
algorithm, this should have improved performance significantly. Unfortunately, this aspect was not
discussed in the paper.

1.3.3 Notes on the Ward BRDF

Bruce Walter’s paper [26] addresses some interesting aspects of the Ward BRDF. It is explained how
the BRDF can be efficiently evaluated and what needs to be considered for a correct sampling. The
description of a bounding mechanism for the Ward BRDF over a region of given directions was the
more important aspect regarding my thesis. Although I do no use this BRDF, itis also based on
the half-angle vector direction. This makes the bounding mechanism compatibleto be used with the
Torrance-Sparrow model.

1.3.4 Median Cut Sampling for HDR Light Probes

Paul Debevec created a poster accompanying a paper at SIGGRAPH 2005 [8]. The paper describes
an algorithm to split an HDR environment map into regions with similar light energy.Its purpose is
to create a certain amount of directional lights representing the map. The algorithm works by splitting
patches recursively along the bigger side of the actually treated patch. This algorithm inspired me to
use it in my implementation for creating an efficient and dynamic sampling technique. This allows
handling large maps and saving preprocessing time for my implementation.

1.3.5 Recovering High Dynamic Range Radiance Maps from Photographs

Debevec and Malik presented a method of recovering high dynamic range radiance maps from pho-
tographs at SIGGRAPH 1997 [5]. This can be done by using conventional imaging equipment, which
is the main benefit of the procedure. It works by taking multiple photographsof a real scene with
different amounts of exposure. Afterward, the images are merged by analgorithm to create a single
high dynamic range radiance map. This enables the authentic recording of illumination settings in
combination with an adequate effort. Paul Debevec created numerous mapsand made them publicly
available in the internet [6]. Remarkably, most scientific work about high dynamic range (HDR) uses
the maps from his gallery. At SIGGRAPH 1998 a photo realistic rendering system was presented
which allows rendering of synthetic objects into real scenes [7]. This uses the HDR radiance maps to
illuminate a synthetic object appropriately thus it is not recognized as artificial.Of course, this also

3

CHAPTER 1. INTRODUCTION

involves local lighting effects, but due to the use of a reflection model for nearby objects the method
achieves very good results.

4

Chapter 2

Fundamentals

Photo realistic rendering implies a very complex simulation system based on physical principals. So
it is a necessity to know and understand some fundamental concepts. This chapter is dedicated to ex-
plain a selection of the most important general algorithms used in the implementation accompanying
this thesis. The first section describes how to calculate with spherical patches and solid angles. These
basics are required for calculations with respect to the infinite area light in chapter 6. The subsequent
sections explain the general idea ofray castingandray tracing. To understand the optimization pro-
posed by the lightcuts system, this knowledge is essential. This chapter is closed by a description of
different reflection models used by modern ray tracers like reflection, refraction and subsurface scat-
tering. Additionally, some prominent models including the Torrance-Sparrowmicrofacet model are
explained in great detail.

2.1 Geometry

Calculations in a 3D environment can only be done by the help of a decent portion of geometrical
knowledge. For the ray tracing algorithm described later in this chapter youneed to know how to
subtend rays and any kind of objects present in the scene. This would most likely be a set of polygons
and quadric surfaces. For some parts of the lightcuts implementation spherical objects were a major
challenge, so this is the first item to be examined.

2.1.1 Spheres and Spherical Coordinates

Often it is very handy to describe a point on the unit sphere by Cartesian coordinates. On the contrary,
a better representation for many applications are spherical coordinates.These coordinates consist of
two angles and a distance from the origin. The distancer is the radius of the sphere centered at the
origin of the coordinate axis.θ denotes the zenith angle between the positive z-axis and the vector
from the origin to the pointP on the sphere.φ is defined as the azimuth angle from the positive x-axis
and the projected vector~p on the xy-plane. With this definition the valid range forθ is [0;π] and for
φ the valid range is[0; 2π). It is sometimes necessary to switch between the two representations. The
formulas for the mapping fromf(r, θ, φ)→ f(x, y, z) are:

5

CHAPTER 2. FUNDAMENTALS

x = r sin θ cos φ

y = r sin θ sinφ

z = r cos θ

The formulas for the inverse mapping function fromf(x, y, z)→ f(r, θ, φ) are:

θ = arccos(
z

r
)

φ = arctan(
y

x
)

If the radius of the sphere is equal to1.0, then it can be referred as unit sphere andr can be left out
whenever it is a factor or denominator. Since infinite area lights are definedby incoming radiance
from all directions, the unit sphere plays an important role.

2.1.2 Solid Angles

The solid angleΩ is the geometric equivalent to an angle in a plane. It represents a set of directions
and its unit issteradian (sr). The solid angle of a surface in space with respect to a location can be
obtained by projecting it on a sphere with radiusr around this location. Consequently it is defined as
the size of the projected surface divided by the squared radius:

Ω =
A

r2

The differential angledω can also be written as an integral depending on the differential size of the
considered surfacedA:

dω =
dA cos θ

r2

Theθ denotes the angle between the surface normal and the vector from the origin. This ensures that
the orientation of the surface is treated correctly. The divisor is the squared distance of the surface
from the origin.

2.1.3 Spherical Patches

The infinite area light in combination with the median cut algorithm uses special lights which describe
a whole set of directions on the unit sphere. For this case it is essential to be able to calculate the
spherical angle for such a light source. These patches can be expressed by intervals ofθ andφ in
spherical coordinates. Matching this prerequisite, it is possible to calculatethe area of such a patch as
seen in figure 2.1 and thus finding the solid angle it describes:

6

2.2. RAY CASTING

A =

∫ θ2

θ1

∫ φ2

φ1

sin θdθdφ

= (−φ1 + φ2)(cos θ1 − cos θ2)

Figure 2.1: Spherical Patch.

2.2 Ray Casting

The ray casting algorithm was first presented by Arthur Appel in 1968 [2]. It works by shooting rays
from an eye point into the scene. The ray then tries to find the closest object blocking its path. When
an object was hit by the ray, the lighting and shading at the intersection point can be determined. The
surface color is determined by the properties of the lights in the scene, the material of the surface and
the interaction of both.

2.3 Ray Tracing

The more advanced Ray Tracing algorithm was developed by Turner Whitted in 1979 [29]. The previ-
ous ray casting algorithm has the big deficiency of only shootingprimary rays. This means only rays
from the eye point are cast. Whitted’s idea was to recursively call the algorithm again, if the ray hits a
shiny object like a mirror (see figure 2.2).
The ray is reflected by the surface normal at the intersection point to retrieve the arriving light. Almost
the same applies to transparent objects with the difference that light is refracted. Then the ray enters
matter and might be reflected and refracted again inside. The reflection/refraction process is repeated
until a predefined recursion depth is reached or a solely diffuse objectis hit. Diffuse objects reflect

7

CHAPTER 2. FUNDAMENTALS

Figure 2.2: The figure shows the general idea of recursive ray tracing.

light in any direction, hence the reflection direction is not representing the properties of a surface ad-
equately. At each intersection pointshadow raysare generated to check, if a surface is visible to the
lights in the scene. This test is very time-consuming, since all light sources have to be considered for
opaque objects lying between the surface and the position of the light source. In general, thevisibil-
ity denominates if objects are situated between two points in the scene. Whitted’s method is based on
evaluating the perfect specular reflection and refraction direction. Since there are few real surfaces like
mirrors and glass which satisfy this criteria, the method was extended by usinga function represent-
ing the reflective properties of a surface. This function is calledbidirectional reflection distribution
function (BRDF). It describes how incident radiance emitted by a light source from directionωi is
reflected in directionωo. This issue is addressed in great detail in subsection 2.3.5.

Many techniques have been developed for speeding up this process. One approach is the lightcuts
algorithm that reduces the number of shadow rays necessary to approximate the lighting.

2.3.1 The Rendering Equation

The rendering equation introduced by Kajiya [13] is the basic principle of modern global illumination
algorithms. It is also known aslight transport equation(LTE) which might be a better term for its
meaning. The equation describes how much light arrives at the viewer’s position Lo from a visible
surface. This surface can reflect (Lr) and emit (Le) radiance described by the formula below:

Lo(p, ~ω) = Le(p, ~ω) + Lr(p, ~ω)

The vectorω denotes the direction from surface positionp towards the observer’s position. The amount
of reflected light is substituted by the integral of arriving radiance reflected by the BRDF. Additionally,
this term depends on the incident angle of the arriving light. The expandedversion of the LTE is
formulated as follows:

Lo(p, ~ωo) = Le(p, ~ωo) +

∫

S

fr(p, ~ωo, ~ωi)
︸ ︷︷ ︸

BSDF

Li(p, ~ωi)
︸ ︷︷ ︸

incident radiance

(~ωi · ~n)
︸ ︷︷ ︸

attenuation

d~ωi

8

2.3. RAY TRACING

Since the principle of light transport is energy conservation, it may not beforgotten that incident
light Li(p, ~ωi) has a recursive nature. Every illuminated surface emits light, which is scattered in the
scene and illuminates another surface and so on... Radiance is constant along a ray in vacuum. For
this reason it is possible to define the exitant radiance atp in direction~ω to be equal to the incident
radiance atp′ for a ray arriving from direction−~ω:

Li(p, ~ω) = Lo(p
′,−~ω)

Of course, there must not be any surface intersecting the ray betweenp andp′. To find the first inter-
section of a ray starting fromp in direction~ω, the trace functiont is used. This changes the equation
to:

Li(p, ~ω) = Lo(t(p, ~ω),−~ω)

If this result is inserted into the LTE, the final equation suffers from recursive definition, because
radiance leaving the surfaces appears on both sides:

L(p, ~ωo) = Le(p, ~ωo) +

∫

S

fr(p, ~ωo, ~ωi)L(t(p, ~ωi),−~ωi)(~ωi · ~n) d~ωi

It is plausible that the equation can only be solved analytically for very primitive scenes with few
participating surfaces. Many algorithms have been developed to estimate the value of the integral on
the right side of the equation. A simple method is to be only interested in the radiance arriving directly
from light sources in the scene. In thephysically based ray tracer(PBRT) from Matt Pharr and Greg
Humphreys the algorithms calculating the estimates are calledintegrators. The term is used in this
thesis as well for thelightcutsintegrator.

2.3.2 Light Attenuation

Most ray tracing systems have the common assumption of light traveling in a vacuum if it does not
intersect any geometry situated in the scene. Without a medium present, all emitted photons hit a
surface or fly towards infinity. Due to energy conservation the photons never disappear as long as they
are not absorbed by a surface thus transformed into heat. It is the pointof interest to calculate the
amount of light arriving at a differential area located at a surface in thescene using the setting from
figure 2.3.

A light source is shining at a surface with its surface normaln and the inclination angleθ. The distance
to the light source is denoted byr. Since a definite quantity of photons are shot from a light source
the inward angle of the arriving light determines how many photons arrive at the differential area.
As Lambert’s lawtells, the amount of energy is proportional to the cosine of the angle betweenthe
surface normal and the incident light direction. The incoming radiation is scientifically referred to as
irradianceE and is measured by the unit[wm−2] (area density of flux). The initial energy of a light
source is defined asΦ, so the irradiance arriving at the differential area is:

E = Φcos θ

9

CHAPTER 2. FUNDAMENTALS

Figure 2.3: Light attenuation for omni directional light sources.

Point lights distribute light equally in all directions, hence the distancer from the light attenuates
the number of photons hitting the differential area. This can be imagined easily: The energy spreads
spherically around the originating light source. Simultaneously, the energyon the surface of the sphere
stays the same. Due to the surface area’s quadratic development, the irradiance arriving at the spherical
surface is proportional to1

r2 :

E =
Φcos θ

4πr2

In more general terms, if a differential area is considered, the irradiance arriving at a pointp from the
hemisphere over the surface normaln is defined by the following integral:

E(p, n) =

∫

Ω
Li(p, ωi)|cos θi|dωi

2.3.3 Bidirectional Surface Scattering Distribution Function (BSSDF)

The scattering behavior of light is the most important aspect to take into consideration when simulat-
ing physically correct global illumination. As mentioned before it is a part of the LTE. If you imagine
some photons arriving at a random surface, it is a matter of course that these photons are reflected,
transmitted or absorbed. The BSSDF is the most general model that simulates this behavior of light.
Its initial nomenclature has already been defined in 1977 [19]. The definition for the BSSDF over the
whole sphere of directionsS2 at positionp looks like this:

dLo(p, ωo) =

∫

A

∫

S2

S(p′, ωi, p, ωo) cos θidωidA

Solving this equation is not trivial at all, because it also contains the differential irradiance arriving
at p′ from directionωi. Therefore, the BSSRDF requires integration over surface area andincoming
direction. Its complexity is due to the fact, that light which is entering matter at position p′ might travel
for some distance underneath until it leaves it again at positionp Subsurface scattering is a problem

10

2.3. RAY TRACING

domain of its own and is heavily worked on. So far the publications of Jensen[12] at SIGGRAPH
in 2001 and subsequent work showed that it is worth the additional effort. Translucent materials like
skin, fluids and marble appear much more realistic than before. The subsequent sections describe
simplified versions of bidirectional reflection functions commonly used by raytracers.

2.3.4 Bidirectional Scattering Distribution Function (BSDF)

The union of both previously mentioned BRDF and BTDF is defined as BSDF.Usually it is a set of
four functions: two treating the light reflected at both sides of the surfaceand two for its transmitted
amount. From the programmer’s point of view, it is an advantage, becauseyou only need to refer to
an abstract reflection interface, that knows itself how light is reflected in dependence of the viewer’s
direction.

2.3.5 Bidirectional Reflectance Distribution Function (BRDF)

As mentioned before, theBidirectional Reflectance Distribution Functionis a simplifiedBSSRDF
which assumes that reflected light arrived at the same position before. Tobe physically correct, BRDFs
have two fixed qualities:reciprocityandenergy conservation. The first one ensures that incident and
exiting light directions may be switched and the result stays the same:

fr(p, ωo, ωi) = fr(p, ωi, ωo)

Energy conservation is the basic principle of all physically based simulation systems. In this specific
case, it means that the total reflected light energy is equal or less than the incident light energy arriving
from a hemisphereH2 around the surface normaln:

∫

H2

(n)fr(p, ωo, ωi) cos θidωi ≤ 1

The BRDF represents the probability that an incident photon will be reflected in a certain direction
and does not pay attention to the photons entering the matter. This implicates that the surface normal
~n and the incident light directionωi are situated on the same side of the surface, in other words the dot
product of the two vectors is always positive. Thus, the BRDF only defines the relation of incoming
irradiance and leaving radiance at a positionp and not the interaction with the material itself, which
is referred to assubsurface scattering. It can be observed experimentally, that reflected radiance is
proportional to the incoming irradiance, i.e. if a light source emission is increased, the irradiated
objects also appear brighter. This relationship can be expressed as:

dLo(p, ωo) ∝ dE(p, ωi)

This proportionality leads to the definition of the BRDF:

fr(p, ωo, ωi) =
dLo(p, ωo)

dE(p, ωi)
=

dLo(p, ωo)

Li(p, ωi) cos θidωi

11

CHAPTER 2. FUNDAMENTALS

By integrating this relationship over the surface area it is possible to calculatethe total light leaving
the surface:

dLo(p, ωo) =

∫

S2

fr(p, ωo, ωi)Li(p, ωi) cos θidωi

Assuming the light arriving from all directions is the same, the equation can befurther simplified.
Usually, this term is denoted byρhd and represents thehemispherical directional reflectance:

ρhd =

∫

H2(n)
fr(p, ωo, ωi) cos θi dωi

2.4 Reflection Models

Many models have been developed trying to simulate certain effects. The common models are derived
from measured data, certain phenomenons, optics or simulations. I will startwith the simple models
and basics to reflection first and later on describe the more sophisticated ones.

2.4.1 Lambertion Reflection (perfect diffuse reflection)

Lambert’s Cosine Law postulates that an ideal diffuse surface, also known as a “Lambertian” surface,
scatters light equally in all directions. By looking at such a surface, the perceived brightness does not
change with an altering viewing direction. The reflected number of photons depends on the differential
viewing angle and the differential size of the surface area. The followingexample helps to better
understand this issue: An observer looking from the surface normal direction sees a differential area
dA with a determined differential solid angledΩ. Now the observer moves around the differential area
keeping the same distance. The intention of the viewer to only keep his differential solid angle enables
him to see a bigger area of the surface. Luckily, the surveyed size of thepatch is proportional to 1

cos θ
.

As defined by Lambert, the amount of reflected light in the viewing direction is proportional to the
cosine of the angle the viewer is looking at it. This is the key to cancel the cosine in the numerator and
denominator of the equation, leading to an equally perceived number of photons independent of the
viewing direction. That means for the BRDF a constant value independentof the viewer’s direction.

fr(ωi, ωo) =
ρ

π

2.4.2 Specular Reflection and Transmission

Mirrors reflecting light are the ideal example for specular reflection. Regarding computer graphics
this type of reflection plays an important role for the microfacet models described in the following
section. In geometrical terms, perfect specular reflection implies incident light being scattered in a
single outgoing direction:

θo = θi

12

2.4. REFLECTION MODELS

If light arrives at a translucent surface, a certain amount will be refracted. This behavior of di-
rection change is explained bySnell’s law. At the boundary between the two participating media, the
wave direction is altered. The so-calledrefraction directionangleθt from the mirrored surface normal
−~n can be derived usingSnell’s law:

ηi sin θi = ηt sin θt

The change in direction depends on the participating media, which are categorized by their index of
refraction. This parameterη tells how much slower light travels inside a specific medium compared
to the speed of light measured in vacuum. Unfortunately, the index of refraction depends on the wave-
length of the incident light, as it can be observed whenever white light is dispersed by a prism. To save
computational time and effort this effect is usually ignored in a ray tracing system.

2.4.3 Fresnel Equations

The previous subsection was denoted to the reflection and transmission direction of light for specu-
lar surfaces. Another interesting part of reflection theory is the behavior of semi-transparent surfaces.
Augustin-Jean Fresnel developed a model based on the refractive indices of the media the light is trav-
eling through. It is known as theFresnel equationsand denotes the reflection coefficient. In general,
the result also depends on the polarization of light and additionally on the conductive behavior of the
surface.Conductors(metals) anddielectric media(non-conductors) have their own set of equations
due to the fact, that metals are not translucent, but absorb a certain amountof light energy. This effect
is controlled by theabsorption coefficientk. The formula for dielectrics is:

r‖ =
ηt cos θi − ηi cos θt

ηt cos θi + ηi cos θt

r⊥ =
ηi cos θi − ηt cos θt

ηi cos θi + ηt cos θt

Table 2.1 offers many examples for indices of refraction. Refraction is wavelength-dependent, so these
values can only be used as an approximation of the behavior of visible light.

Material η atλ = 589.3nm Material λ = 589.3nm

Vacuum 1.0 Air at sea level 1.0002926

Water (20◦C) 1.333 Ice 1.31

Rock salt 1.516 NaCl 1.544

Bromin 1.661 Diamond 2.419

Cinnabar 3.02 Silicon 4.01

Table 2.1: Measured values for the indices of refraction. Values taken from [23].

For conductors this formula is commonly used:

13

CHAPTER 2. FUNDAMENTALS

r‖ =
(η2 + k2) cos θi

2 − 2η cos θi + 1

(η2 + k2) cos θi
2 + 2η cos θi + 1

r⊥ =
(η2 + k2)− 2η cos θi + cos θi

2

(η2 + k2) + 2η cos θi + cos θi
2

Some examples for the absorption coefficient and the index of refraction for conductors are given in
table 2.2.

Material η k

Copper 0.617 2.630

Gold 0.370 2.820

Silver 0.177 3.638

Steel 2.485 3.433

Table 2.2: Measured example values for the indices of refraction and the absorption coefficients of
real materials.

Most ray tracers do not calculate with polarized light. So it is assumed that thepolarization of light is
randomly distributed. This leads to the formula for the “unpolarized“ Fresnel reflection coefficient:

Fr =
1

2
(r‖ + r⊥)

2.4.4 Microfacet Models

Real life surfaces are not plane at all. With the proper magnification surfaces can be imagined as
regions with many pits and falls. The differences in height and angle determine the perceptual rough-
ness an observer recognizes when looking at it. A model using this geometric-optics based approach
is called amicrofacet model. In general, the microfacets are treated as tiny mirrors with respect to
the differential area being illuminated. As a consequence, the total amount of light scattered towards
the viewer’s direction is determined by the number of mirrors providing the ideal reflection direction.
Some local lighting effects may occur which reduce or increase the arriving light. These anomalies
can be sorted into three groups, demonstrated in figure 2.4:

Masking A microfacet is not visible to the viewer due to another one occluding it.

Shadowing The inversion to masking: Reflected light does not reach the viewer because a microfacet
occludes its path.

Inter-reflection Light reaching the viewer after bouncing between multiple facets.

There exist several ways to reduce these effects by simplifications to the model. A most common one
is to assume that all microfacets areV-shapedwith pits of equal height. This way, it is sufficient to
consider the direct microfacet neighbor only. The models always try to use a good trade-off between
simulating the anomalies and calculation efficiency.

14

2.4. REFLECTION MODELS

(a) Masking (b) Shadowing (c) Interreflection

Figure 2.4: Geometric effects caused by microfacets.

2.4.4.1 Oren-Nayar Diffuse Reflection

In 1992 Michael Oren and Shree K. Nayar from Columbia University [20] proposed amicrofacet
model that eliminates some shortcomings of the primitive Lambertian model for diffuse reflection.
For this reason, they observed the reflection behavior of real life objects. Their microfacet model is
based on a surface consisting of symmetric V-shaped grooves - all beingperfect Lambertian reflectors
of their own. This is a main difference to other microfacet models simulating specular reflection.
The parameterσ is given to modify the roughness of the surface following a Gaussian distribution.
It simply changes the standard deviation of the orientation angle. To give some examples, aσ of 0◦

simulates a perfect Lambertian surface while aσ of 40◦ simulates a surface appearing much flatter
due to the reduced dependency of the surface orientation angle. The final equation for the model is:

fr(ωi, ωo) =
ρ

π
(A + B max(0, cos φi − φo) sin α tanβ)

A = 1− σ2

2(σ2 + 0.33)

B =
0.45σ2

σ2 + 0.09)

α = max(θi, θo)

β = min(θi, θo)

2.4.4.2 Torrance-Sparrow Microfacet Model

The micorfacet model introduced by Torrance and Sparrow has already been developed in 1967 (see
[25]). They use the assumption of surfaces consisting of perfect specular reflecting microfacets. Mi-
crofacets having a surface normal equal to the half way vector reflectlight towards the viewer. There-
fore the surface normals need to fulfill the following equation:

15

CHAPTER 2. FUNDAMENTALS

Figure 2.5: Halfway Vector.

ωh =
ωi + ωo

|ωi + ωo|
Theωh denotes the halfway vector, i.e. the vector inhalf way betweenthe incident lightωi and the
viewerωo as it is shown in figure 2.5. The orientation of the microfacet surface normals is described
by a distribution functionD(ωh) controlling the portion of halfway vectors that perfectly match the
previously defined equation. In 1977 Blinn [4] proposed a microfacet distribution function with an
exponential falloff starting from the direction of the surface normal. The properly normalized Blinn
microfacet distribution with its exponente is formulated as:

DBlinn(ωh) =
e + 2

2π
(ωh · n)e

To further elaborate the model it is assumed that the reflecting microfacets are surfaces in accordance
to Fresnel’s law of reflection. This means that the Fresnel termFr(ωo) in dependence of the viewer’s
direction must be added. In order to account for shadowed and maskedmicrofacets an additional
term is added, called thegeometric attenuationtermG(ωo, ωi). The attenuation term consists of two
elements. The first tries to simulate the masking effect from 2.4:

Gmask(ωo, ωi) =
2(n · ωh)(n · ωo)

ωo · ωh

The shadowing effect can be simulated this way:

Gshadow(ωo, ωi) =
2(n · ωh)(n · ωi)

ωo · ωi

Usually a combined version of the terms is used:

G(ωo, ωi) = min(1, min(
2(n · ωh)(n · ωo)

ωo · ωh

,
2(n · ωh)(n · ωi)

ωo · ωi
))

Putting it all together, the final equation for the Torrance-Sparrow BRDFis:

fr(p, ωo, ωi) =
D(ωh)G(ωo, ωi)Fr(ωo)

4 cos θo cos θi

16

Chapter 3

Illumination by Lightcuts

The lightcuts framework first presented by Bruce Walter et al. on SIGGRAPH 2005 is a method for
efficiently computing realistic illumination. The initial idea was to approximate the direct illumina-
tion provided by many point lights by clustering them into groups. These groups are organized as a
light tree with the root node representing the accumulated illumination in the whole scene. With an
algorithm to compute the bound of the approximation error for each cluster, itis possible to determine
a light cut through the tree without falling below a predefined error threshold. The whole chapter is
denoted to explain the lightcuts system in theory, starting from the basics of light transport.

3.1 The Rendering Equation Revisited

The previous chapter introduced the rendering equation and the properties of surface reflection theory
in great detail. For most scenes it is practically impossible to solve the light transport equation in its full
generality. Therefore, an algorithm is needed to calculate an approximationfor the lights integral that
gives the reflected radiance. The algorithm of choice isdirect lightingwhich is a simple approximation
for the LTE:

Lo(p, ~ωo) = Le(p, ~ωo) +

∫

S

fr(p, ~ωo, ~ωi)Ld(p, ~ωi) cos θi d~ωi

The direct lighting integrator represents this part of the previous equation:

∫

S

fr(p, ~ωo, ~ωi)Ld(p, ~ωi) cos θi d~ωi

Gladly, reflections from the light sources are independent of each other. As a consequence it is possible
to break it down into a sum over all lights:

∑

l

∫

S

fr(p, ~ωo, ~ωi)Ld(l)(p, ~ωi) cos θi d~ωi

The ability to evaluate the contribution of each light independently is the key requirement for the
lightcuts algorithm.

17

CHAPTER 3. ILLUMINATION BY LIGHTCUTS

3.2 The Lightcuts Algorithm

Bruce Walter and his associates reformulated the previously mentioned direct lighting integral. They
introduce four terms for the final lighting computation:

M (material term) The BRDF of the surface multiplied bycos θi

G (geometric term) Attenuation of light due to geometrical distance.

V (visibility term) Visibility of the light source from the regarded point on the surface.

I (intensity) Emitted power from the light.

The pointx is illuminated by a set of lightsL, gathering the contribution of each individual light:

Lx =
∑

i∈L

Mx,iGx,iVx,iIi

Since accurate approximation of global illumination requires a large set of lights, it is very time-
consuming to evaluate the illumination by using all lights. Lightcuts provides a scalable solution for
this problem by arranging lights into clusters. The radiance reflected into theviewers direction is
expressed as estimate from all cluster light sourcesC :

Lx ≈
∑

c∈C

Mx,cGx,cVx,cIc

To bring efficiency to the next level, the clustering of light sources is organized, referred to ashier-
archical light tree. This step is done by preprocessing all the lights available in the scene, which is
explained below in this chapter. When the ray tracing algorithm shoots rays into the scene and hits
a surface, it is essential to have a method to find a light partition contributing thegreatest amount of
radiance for the considered surface location. Therefore an error estimation routine it used to compute
an upper bound on the error introduced by using a light cluster comparedto the individual lights. The
direct lighting integralLc for a cluster of lights is the sum of all radiance added by the lights in the
cluster:

Lc =
∑

i∈C

Mx,iGx,iVx,iIi

A good approximation for this term can be found by creating a representative light r for the cluster.

Lr ≈Mx,rGx,rVx,r

∑

i∈C

Ii

It is situated inside of the cluster and introduces a certain amount of errorBEc. The crucial part
of the algorithm is fast and precise error estimation. If the calculated erroryields a value above the
predefined perceptual visibility threshold, a refinement of the cluster mustbe initiated. This is done
by ascending the hierarchical light tree and performing the error estimationagain for the child nodes.

18

3.3. LIGHTCUTS BOUNDING CLUSTER ERROR ESTIMATION

These refinement steps are repeated until the error estimate drops beneath the threshold. For leaf nodes
in the tree the error is always0 and does not need to be evaluated. The selected nodes represent a cut
through the light tree, thus it is calledlightcuts. The source code describing this algorithm can be
obtained from Appendix A.3. In the subsequent sections I will explain the process of error estimation
for light clusters and the structure of the light tree.

3.3 Lightcuts Bounding Cluster Error Estimation

An upper bound for the error introduced by using a cluster instead of each individual light has to be
approximated. The error is defined by the termBEc and is the difference between the direct lighting
integralLc and the direct lighting approximationLr using a representative light:

BEc = |Lc − Lr|

Since direct lighting works by multiplyingM , G, V andI it is necessary to find the error’s upper
bound introduced by any of these terms. The intensity termI is also part of the error estimation,
because the magnitude of incident radiance determines how much error could possibly be done. The
error bounds have to be generated for a surface positionx and a light clusterC.

The visibility termV defines the visibility of a light source. It is1, if a light is visible from the surface
position. Otherwise it is0. In case of semi transparent surfaces, a fraction value is also conceivable.
The term’s upper bound needs to be exact, which is not easy to achieve for arbitrary scenes. Therefore
all lights are declared potentially visible. This means using the trivial upper bound of1.0:

V E = 1.0

The geometric error termG describes the attenuation each light in the cluster suffers from. For point
lights the term depends on the distanced between the surface positionx and each light’s position
lposi in the clusterC:

Gx,i =
1

di
=

1

|lposi − x|2

An upper bound for the attenuation term can be found by taking the minimum possible distance:

max(Gx) =
1

min(di)

For large clusters of point lights this is hard to evaluate, so the minimal distance isapproximated using
a bounding box, which inherits all the light sources. Figure 3.3 shows a hitsurface and the vector with
minimal distance from the surface position to the light cluster box.
The minimal distance from the surface position to the axis aligned bounding box (AABB) is then
determined by calculating the minimal distance for each geometric dimension. This means the x-
value of the surface positionp is compared to the x-intervalX[xmin; xmax] of the bounding box. If
the coordinate is outside the interval, the point with the shortest distance fromp is at the limit of the
interval closest to the coordinates ofp. Otherwise the coordinate is between the limits of the interval.

19

CHAPTER 3. ILLUMINATION BY LIGHTCUTS

Figure 3.1: The minimal distance between the surface positionp and the light clusterC is used to
calculate the geometric term’s upper bound.

In this case, simply the value fromp is taken over. The hit pointA on the bounding box surface
consequently has the coordinates:

A = {Closest(x), Closest(y), Closest(z)}

The geometric bound for the infinite area light is1.0, because there is no attenuation with increasing
distance.

The material termM inherits both the cosine falloff due to the incident light direction as well as the
reflection properties of a material defined by the BRDF of the hit surface positionp. Determining an
upper bound for the cosine term means to calculate the minimum angle between thesurface normal
atp and the bounding structure for the clustered light sources. For point lightsthis means calculating
a bound for a bounding box. The special infinite area light uses a bounding cap. The idea behind it
and notes on the implementation of the bounding process will be described in thesubsequent chapter.
Creating upper bounds on the BRDF is an even more challenging task. My implementation supports
bounds on some models already existing in the PBRT rendering system. Startingwith the Lambertian
diffuse reflection, which is trivial to bound, I developed a bounding mechanism for the microfacet
Oren-Nayar diffuse reflection model and for the Torrence-Sparrowmicrofacet model. The Torrence-
Sparrow microfacet model contains the viewer dependent halfway vector. The paper [26] offered a
reasonable solution for bounding the halfway vector. This will be explained in chapter 5.

3.4 Light Tree

Light trees are hierarchical data storages for lightcuts compatible light sources. In my implementation
there are two different types of light trees. One tree is generated for aninfinite area light and an
additional one for the point lights in the scene. These two types of light treeshave many things in
common, so I will describe the general functionality first. The light tree consists of interior nodes and
leaves. Each leaf is an individual light source, not different to those used by general direct lighting
calculations. Interior nodes in the tree are light clusters representing all the lights below. The nodes
contain arepresentative lightthat embodies the total emitted radiance of its child nodes and a bounding
structure to help approximating the geometric and material term in theerror estimationroutine. An
example tree with 8 lights can be examined in figure 3.4.

20

3.4. LIGHT TREE

(a) A light tree with 8 individual lights. The interior nodes de-
noted byR represent the lights below. The emitted radiance of
a node is the accumulation of its child nodes.

3.4.1 Representative Lights

A representative light emits the accumulated radiance of its children. The totalemission of a cluster
is defined as the sum of all individual lights the cluster represents:

IR =
∑

i∈C

Ii

The point light tree uses an AABB to represent the spatial extent of the incorporated light sources.
Axis aligned bounding boxes are defined by their limit in each dimension. The figure 3.4.1 shows an
axis aligned bounding box for a 2 dimensional setting:

BBox(xmin, xmax, ymin, ymax, zmin, zmax)

Infinite area lights (IAL) do not need to store bounding boxes. The intended use of an IAL is to define
radiance arriving from all possible directions. The implementation of the infinite area light tree uses
a variable number of directional light sources to replace common infinite arealight source sample
algorithms. Therefore, representative directional lights store the radiance arriving from a limited area
on the unit sphere. The area is expressed by two intervals, one for the zenith distanceθ and one for
the azimuth angleφ:

BDir(θmin, θmax, φmin, φmax)

The next sections describe two methods of creating a light tree for point lights. Mainly there are two
possibilities for clustering: The bottom-up approach, which was describedin the initial lightcuts paper
and a top-down attempt mentioned in themultidimensional lightcutspaper from 2006 [27]. I will show
that the latter leads to a much better light tree, than the first one with itssimilarity metric.

3.4.2 Greedy Bottom-up Light Tree Generation

The first lightcuts paper [28] proposed to build the light tree in bottom to top manner by clustering
lights following a similarity metric. This metric was defined by the emitted radianceIC, the diagonal
length of the cluster bounding boxαC, the half-angle of the bounding coneβC and a constantc to
control the relation between spatial and directional similarity:

21

CHAPTER 3. ILLUMINATION BY LIGHTCUTS

(b) Lights inherited by an axis aligned 2D
Bounding Box.

(c) Represents incident light directions in
the intervals forθ andφ.

IC(α2
C + c2(1− cos βC)2)

The algorithm was not described any further. It was only mentioned to be agreedy clustering approach
trying to combine lights with minimal value due to a similarity metric. This method of clusteringis
very slow, because you need to compare each light with all remaining lights in order to find the
minimal similarity metric value. For the first level of clusters alreadyn2

2 comparisons have to be done
and stored for efficiency. For any level of the tree, the number of elements is bisected, so in the end by
obeying the result of the arithmetic series of1 + 1

2 + 1
4 + 1

8 + . . . the number of comparisons reaches
n2. Nevertheless, I implemented the algorithm to see how it actually performs. Theresult was a slow
evaluation and unnecessary big clusters. Whenever two elements are grouped due to their similarity,
other pairs might become less optimal. Figure 3.2 demonstrates the problem.

(d) 4 point lights in the scene.(e) When the two lights nearest
to each other get grouped first,
the created clusters are too big.

(f) The optimal clustering.

Figure 3.2: Possible problems occurring by light clustering.

Assuming that all point light sources have an equal emission of light, the similarity metric tells, that
the two lights in the middle are grouped first. After taking out the two lights the two ones left get
clustered to an unnecessary big cluster. Building a minimum spanning tree could possibly help to
solve this problem, but there is a more reasonable approach for the generation of clusters.

22

3.4. LIGHT TREE

3.4.3 kd Light Tree

Thekd-tree is a very well suited top-down data structure to partition a big number oflight sources into
clusters. Remembering the lightcuts system’s operating mode, it should be the maintask to generate
clusters, whose error estimates soon fall below the perceptual threshold. Considering point lights the
main factors of influence are the distance to a light source, the minimum angle between the surface
normal and the cluster and its intensity. The squared distance is part of the geometric term of the light-
cuts error estimate. For this reason a binary space subdivision algorithm, e.g. octree space partitioning
could be used. The octree algorithm splits the space into eight equally big regions in each step of exe-
cution. This is achieved by splitting with three axis perpendicular planes, selecting the position of the
plan as the middle of the currently considered box. In contrast to this, thekd-tree nodes only contain
one axis perpendicular splitting plane, not necessarily situated at the medianof the boxes geometric
extent. As a consequence, duringkd-tree generation a heuristic can be used to determine which split
position offers the best trade-off depending on the future usage. I implemented it as a special balanced
kd-tree where each leaf node is at the same level of the tree and only the leaves store real light sources.
Wikipedia tells [24], that these special trees are also calledkd-tries. The difference between akd-trie
and akd-tree is that interior nodes ofkd-trie do not store data. This has consequences for tree building
and data storage. The next chapter will cover this issue thoroughly.

3.4.4 kd Point Light Trie Construction

In the beginning it is necessary to definek, which is the number of dimensions the initial data has.
For the purpose of generating a point light tree, there are three dimensions. These are the x, y and z
coordinate of the point lights positions.

The algorithm building the tree works this way:

• determine split dimension.

• determine split position.

• elements left of the split position must be smaller than those on the right.

• recursive call of the algorithm for the split elements.

There are several strategies possible to determine, which axis should be split first. The simplest
one is to split in a certain predefined order. Dealing with geometric positions, abetter strategy is to
split the axis with the maximum extent first. This reduces the volume of the bounding box by the
maximum immediately known value.
Finding the split position is a similar problem. The use of thespatial medianas primitive splitting
strategy leads to a cubically subdivisioned space, which generates a good kd-tree for many scenes.
An even simpler method is the usage of theobject mediansplitting strategy. It generate a splitting
plane with each side containing the same or similar number of objects. This is the splitting rule of
choice, since it is easy to implement and generates a balanced tree. Splitting heuristics forkd-trees
could be a chapter on its own. Depending on the usage, there exist many ideas how splitting could
be controlled. Since these models were mainly developed for ray tracing, they operate with triangles
and cannot be used directly to create light trees. There is still some room for further optimization.

23

CHAPTER 3. ILLUMINATION BY LIGHTCUTS

A splitting heuristic that detects particular small regions with many lights would be fine. Since the
algorithm works impressively well, this part has not been a priority so far.For an optimal light tree,
the concept would be to try finding a split plane, whose children have a similarestimated error. This
could be achieved by trying to generate clusters with similar intensity and size. For scene files with a
large number of equally distributed point light sources the standardkd-trie satisfies this proposal.

Figure 3.3 shows how light tree generation works.

Figure 3.3: Overview of the construction algorithm of akd-trie: First, the split dimension is deter-
mined, afterwards the split position. Regrouping of the elements to ensure, that any element in the left
branch has a smaller value with respect to the split dimension compared to thosein the right branch.
A node is created and the algorithm calls itself recursively for both branches.

The algorithm used for light tree generation starts to determine the split axis. The dimension with
the maximum extent is selected. Therefore, all elements must be compared fortheir minimum and
maximum coordinates for each dimension. For the error estimation of a light cluster, a bounding box
will be needed. It is also possible to generate a bounding box for all lights contained in this cluster.
As a side effect, the box can be queried for its dimension with maximum extent. Itis nevertheless
necessary to iterate over all elements in one step. Each split creates a new node of the tree. The
nodes contain the split information, which is thesplit axis, split position, the data necessary for the
lightcuts error estimation, the bounding box and the representative light. Thesplit position is chosen
by selecting the median of elements enclosed by the node. Afterwards, it is necessary to make sure
that all elements in the left branch are smaller than the elements in the right branch with respect to
the split dimension. This action is cheaper than sorting them in ascending order. The algorithm can
now call itself recursively for the just created child branches. The recursion stops, when there is only
one element left. This is a leaf of the tree and contains only the real light source. For real lights,

24

3.5. LIGHTCUTS IN ACTION

no bounding construct or representative light is necessary. The source code forkd-trie generation is
presented in appendix 2.

3.5 Lightcuts in Action

Finally, the selection of nodes leads to a cut across the light tree. To demonstrate the error for some
cases I created some renderings for a scene with a very reduced lightingsetting. Four point lights are
present, two on each side of the spheres. The following pictures show thechanges and introduced
error zones by clustering the lights.

(a) The scene rendered with all lights. (b) The light tree used for rendering.

25

CHAPTER 3. ILLUMINATION BY LIGHTCUTS

(c) The scene rendered with one representative
light and two real lights

(d) Light tree (e) Error zones

(f) The scene rendered with two real lights and
one representative light.

(g) Light tree (h) Error zones

(i) The scene rendered with two representative
lights.

(j) Light tree (k) Error zones

26

Chapter 4

Bounding the cos θ

This chapter explains how the cosine ofθi can be bound for incident light directions. In the lighting
equation, thecos θ is an important part. It describes the scattering of photons due to incident angle.
This phenomenon has already been clarified in 2.3.2. The bound for the cosine ofθ is a very grateful
term, because it can be computed efficiently and reduces the maximum possibleerror of the lightcuts
error estimation term significantly for laterally situated light clusters.

4.1 Algorithm for the Infinite Area Light Source

Figure 4.1: The pointP is the normal direction of the hit surface. The red patch is the set of considered
incident light directionsωi.

The goal is to calculate a cheap and tight bound on the minimum angle between thevector of the
surface normalp and the incident light directionωi. Not to be confused with the term used for the
spherical angleθ, the minimum angle is denoted asα in this section. The following equations will
solve the problem mathematically. For spherical coordinates theθ is in the range[0;π). In this inter-
val the cosine function is invertible, because it is continuous and strictly monotonic decreasing. The
direct relationship between the angle and its cosine allows using both expressions synonymously. This
means, bounding the minimal angle is equivalent to bound the maximum cosine.

θmin ∼ max(cos(θi))

27

CHAPTER 4. BOUNDING THECOS θ

The same applies to any angle between two vectors like theα, the angle between the patch andp.
Since both are situated on the unit sphere and thus already have a length of1.0, the cosine of the angle
is the dot product:

p · ωi

To calculate the bound, it is necessary to find the nearest position inside thepatch with respect top.

4.2 Mathematical Solution

The mathematical solution for the problem is based on the dot product between the pointp and the set
of incident light directions:

cos α = p · ωi = px ∗ ix + py ∗ iy + pz ∗ iz

Figure 4.2:alpha is the angle between the surface normalp and the incident light directionωi at a
surface location. The coordinate system is in world space.

It is possible to omit the trivial case, because this can be computed previously. If the vectorp directs
inside the set of incident light directionsωi, the result forcos α equals1.0. Otherwise the nearest
vector is situated somewhere at the outer edge of the cluster. The cosine ofthe angle between an
arbitrary pointP on the sphere and the outer edges of the patch can be described by the following
four equations. Each equation solves the problem for one of the edges.The correct solution is the
maximum result, i.e. the minimumθ obtained by any of these for the given intervals.

D1(θ) = px ∗ sin θ ∗ cos φmin + py ∗ sin θ ∗ sinφmin + pz ∗ cos θ

D2(θ) = px ∗ sin θ ∗ cos φmax + py ∗ sin θ ∗ sin φmax + pz ∗ cos θ

D3(φ) = px ∗ sin θmin ∗ cos φ + py ∗ sin θmin ∗ sinφ + pz ∗ cos θmin

D4(φ) = px ∗ sin θmax ∗ cos φ + py ∗ sin θmax ∗ sinφ + pz ∗ cos θmax

To determine whether there is a local maximum in the considered range of possible θ andφ it is
necessary to calculate the first derivative:

D′
1(θ) = px ∗ cos φmin ∗ cos θ + py ∗ sinφmin ∗ cos θ − pz ∗ sin θ (4.1)

D′
3(φ) = −px ∗ sin θmin ∗ sinφ + py ∗ sin θmin ∗ cos φ (4.2)

28

4.2. MATHEMATICAL SOLUTION

Figure 4.3: The geodetic distance between a pointP and a spherical patchABCD is equal to the
included angle.

D2 andD4 can be solved analogously. The extrema are determined by setting the equations equal to
0 and solve them forθ assuming thata = px ∗ cos φmin andb = py ∗ sinφmin andc = pz:

D′
1(θ) = 0

0 = a ∗ cos θ + b ∗ cos θ − c ∗ sin θ

0 = (a + b)
︸ ︷︷ ︸

=d

cos θ − c ∗ sin θ

c ∗ sin θ = d ∗ cos θ

c2 ∗ (1− cos2 θ) = d2 ∗ cos2 θ

cos2θ =
c2

c2 + d2

cos θ = ± c√
c2 + d2

⇒ θ = ± arccos

(

± c√
c2 + d2

)

It is now possible to test if an extremum exists inside theθ interval of the patch. If there is none, the
function is monotone and one of the boundary points is the shortest distance. The same applies for the
D′

3 andD′
4 equations, assuming thate = px ∗ sin θmin andf = py ∗ sin θmin.

D′
3(φ) = 0

0 = f cos φ− e sin φ

⇒ φ = ± arctan

(

± e
√

f2 + e2

)

29

CHAPTER 4. BOUNDING THECOS θ

These results lead to the conclusion, that it is possible but not fast to calculate the nearest distance
from an arbitrary point to the patch. Computing the extrema must be performedfor any edge to
determine, if the shortest distance is in between the boundary points. Luckily, there are some special
cases for whom it is possible to evaluate a quick and easy solution. If the sphere is represented by a
latitude/longitude mapping as it is usually done for environment mapping, a section of the sphere can
be marked where evaluation is easy.

(a) The sphere as 2D ll-texture. (b) The colored areas attached to
the sphere.

Figure 4.4: The green area marked with 1 can be treated in an efficient way.

If the pointP is inside the area marked with 1, the pointQ with the nearest distance toP has the same
φ value asQ. This can be observed in figure 4.4). It is possible to proof that the equation describing
the distance between the pointP and the edge next to it has an extremum atQ. If the equation from
4.2 is used andφQ = φP , this leads to:

D′
3(φ) = 0

0 = − sin θ cos φP sin θmin sin φQ + sin θ sinφP sin θmin cos φQ

0 = 0

For the 1-marked area the cosine ofα is the maximum dot product of the vectorp and the twoq
vectors, one for the upper and one for the lower patch boundary:

max(cos α) = max(q1 · p, q2 · p)

.
It is possible to simplify the dot products to:

max(cos α) = max(cos(θP − θmin), cos(θP − θmax))

It depends on the implementation and the cached data which one is evaluated faster. For the remaining
parts of the sphere it is more difficult to find the maximum cosine. Most of the time one of the
verticesA, B, C andD has the minimum angular distance with respect to the pointP . Especially if

30

4.2. MATHEMATICAL SOLUTION

P is located in the red marked area, the pointQ with the nearest distance is sometimes between the
boundary points. Unless the equations introduced in 4.1 are solved for determination of the extrema,
Qs position cannot be told. Altogether, it is complex to find an exact solution foran upper bound
on cos α. Therefore, it seems convenient to search for a fast approximation. Previously, I already
thought of bounding cones for clustering distant lights for the lightcuts algorithm. A similar clustering
approach can be used for directions on the unit sphere. The structurewill be calledbounding capand
is explained in the next section.

4.2.1 Bounding Cap Approximation

Thebounding capis a very simple bounding structure. It represents a cap-like region on theunit sphere
defined by a midpointM and an apex angleβ. This facilitates computing, because any calculation can
be done with respect to the midpoint. Afterwards, the apex angle is regarded to finish the calculation.
In comparison to the introduced patch algorithm, a bound for the maximum cosinecan be defined by
just two lines:

αm = arccos(p ·m)

max(cos α) = cos(αm − β)

Picture 4.5 visualises the idea of creating a bounding cap which inherits the spherical patch.

(a) The green bounding cap fits the red patch. (b) Spherical view of
the bounding cap with
midpoint M and apex
angleβ.

Figure 4.5: Schematics for the bounding cap approximation.

31

CHAPTER 4. BOUNDING THECOS θ

The bounding cap has some prerequisites that must be satisfied:

• The patch is completely inside the cone.

• The midpointM is situated inside the patch.

• The distance from M to the left and right border is the same, because the patch is a symmetric
figure:m · a = m · c, m · b = m · d.

• The midpointM has the spherical coordinatesθM andφM = φmid = φmin+φmax

2.0 .

• The apex angle of the cone does not exceedπ or evenπ
2 , if spherical patches are not allowed to

cross the equator.

4.2.2 Creation of a Tight Bounding Cap

It is very important to find a tight bounding cap with a preferably large overlapping area of the spher-
ical patch and the bounding cap. In order to find a midpointM allowing a small apex angle, it is
possible to simplify the problem: Find the midpoint for the circumcircle of a triangle created by three
vertices of the patch and project this midpoint to the unit sphere afterwards. Scaling the vector does
not change the relation of the distances towards each other. Figure 4.6 shows the idea. It is based
on the assumption that the cap covers the patch entirely if all its vertices are inside. Gladly, it does
not matter which vertices of the patch are used to create the triangle. The circumcenter of triangle is
determined by the help of the median line of any edge. For all four possible triangles the median line
of AB or CD is participating, so the result stays the same.

Figure 4.6: The circumcircle of the△ ABC.

32

4.2. MATHEMATICAL SOLUTION

The pythagorean theorem helps to determine the distance‖x‖ from the base line to the circumcenter
U :

‖x‖ =

√

r2 −
(‖b− a‖

2

)2

(4.3)

r is the radius of the circumcircle and can be expressed in dependency of the triangles’ surface area
S:

r =
‖b− a‖‖c− b‖‖a− c‖

4S

U ’s position can be expressed as:

U = a +
b− a

2
+ x

The vectorx can be obtained by rotating the base line of the triangle by 90 degrees to the left and
scaling it by the length obtained in equation 4.3. Finally, the vectoru is scaled to a point situated at
the bounding sphere by normalizing:

M =
u

‖u‖

There is one pitfall left, if the initialφ extent of the considered spherical patch is larger than half the
sphere. This leads to a midpoint on the wrong side of the origin. For implementingthe algorithm, it is
important to keep this in mind.

4.2.3 Algorithm for the oriented bounding box

Point light sources are clustered by generating bounding boxes to represent the lights’ spread. Sim-
ilar to the previously explained bounding procedure, it is also necessaryto find the minimum angle
between the surface normaln and a bounding box. Therefore the problem is transformed into a coor-
dinate system, where the hit surface position is the origin and the z-axis is the direction of the surface
normal. The problem is visualized by the subsequent figure:
The method to determine the minimum angle between the bounding boxC and the hit surface normal
was introduced in the paper “Notes on the Ward BRDF” by Bruce Walter [26]. I will present his ideas
and calculations in the following section and enhance them.

4.2.3.1 Minimum Angle - Maximum Cosine

Bruce Walter describes an easy way to calculate a bound for the angleα with a minor cutback in
exactness. This disadvantage is compensated by the ability to handle arbitrary rotated boxes. Figure
4.7 shows a schematic where the minimum incident light direction with respect to thebounding box is
denoted by the redx. The maximum cosine ofθ can be written as the dot product between the surface
normal and the normalized incident light direction:

33

CHAPTER 4. BOUNDING THECOS θ

Figure 4.7: The surface normal is aligned with the z-axis. The bounding box C is anywhere but sub-
tending the z-axis.

cos θi = n · i

In a coordinate system where the orientation of the surface normal is the same as the z-axis the problem
can be reformulated as:

cos θi =
iz

√

i2x + i2y + i2z

Replacingiz by its maximum possible value for the bounding box helps to maximize the term in a
first step:

cos θimin
≤ max(iz)

√

i2x + i2y + max(iz)2

Depending oniz the closest or furthestix andiy in relation to the z-axis is selected to minimize or
maximize the denominator. It is noteworthy, that expressions likemax(ix)2 denote the maximum
obtainable squared value.

cos θimin
≤







max(iz)√
min(ix)2+min(iy)2+(max(iz))2

if max(iz) ≥ 0

max(iz)√
max(ix)2+max(iy)2+(max(iz))2

otherwise

The trivial case can be checked previously and sorted out: if the bounding box subtends the positive
z-axis, then the cosine ofθ equals1.0, of course.

34

4.2. MATHEMATICAL SOLUTION

4.2.3.2 Maximum Angle - Minimum Cosine

The minimum cosine can be computed in an analogous way. Therefore the minimumiz has to be
determined first. Then again, it depends on its sign, if the closest or furthest values ofix andiy are
used for minimizing the expression. The following drawing 4.8 shows examplesfor both cases:

Figure 4.8: Bounds for the point light cluster boxes. The xy-plane is mapped to the horizontal axis.

The formula for calculating the minimum cosine is denoted as:

cos θimax ≥







min(iz)√
max(ix)2+max(iy)2+(min(iz))2

if max(iz) ≥ 0

min(iz)√
min(ix)2+min(iy)2+(min(iz))2

otherwise

Again, the trivial case can be handled separately, if the bounding box subtends the negative z-axis. For
both the maximum and minimum angle it is not sufficient to look at the vertices of the oriented bound-
ing box. It is furthermore a necessity to consider the intervals created by vertices. Since the oriented
box is situated at an arbitrary position in the local coordinate system this can be easily evaluated by
iterating over the eight vertices of the box. Knowing the extent with respectto each dimension allows
an easy evaluation of the minimum and maximum values ofix, iy andiz.

35

CHAPTER 4. BOUNDING THECOS θ

36

Chapter 5

Bounding the BRDF

This chapter is denoted to explain how the most difficult part of the lightcuts error estimation computes
an upper bound on thematerial termM of the lightcut integrator. This term iscos θ times the BRDF
of the surface. The previous chapter dealt already with bounding thecos θ term, the maximum and
minimum values for the cosine were calculated. For this chapter, these valuesare taken for granted.
All BRDFs depend on the reflection directionωo and the incident light directionωi. Due to light clus-
tering the incident light arrives from a set of directions. To bound the BRDF it is necessary to find a
local maximum of the BRDF for the given intervals. The task is easier, if the function is monotone or
at least monotone for the considered interval. The first step to bound the BRDF is to calculate the ex-
tent of the interval of the incident light direction. For the zenith angleθ this was already demonstrated
in the previous chapter. Many BRDFs are symmetric around the z-axis. Then it is sufficient to calcu-
late theθ interval. If a BRDF depends on the viewers direction, things really get complicated. Usually
this involves the usage of the half-angle vector. I will demonstrate a method which allows bound-
ing the half-angle vector. The subsequent sections address different types of BRDFs with increasing
complexity.

5.1 Lambertian

The Lambertian reflection is constant over the hemisphere of directions. Because of it simplicity, I
used the Lambertian BRDF as a kind of debug BRDF during development of the lightcuts integrator.
The value returned by the Lambertian BRDF is the incident radiance overπ:

fr(ωi, ωo) =
ρ

π

The upper boundBL for the constant Lambertian BRDF is trivial to compute. The figure 5.1
shows the development of the BRDF for the interval[0; π

2):

BL(ωC, ωo) =
1

π

37

CHAPTER 5. BOUNDING THE BRDF

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

f(ωi, ωo)

θ

Lambertian reflection BRDF

1
π

5.2 Oren-Nayar

Oren and Nayar created a microfacet based model for diffuse reflection. A detailed description of the
model can be found in 2.4.4.1. The BRDF is defined by this formula:

fr(ωi, ωo) =
ρ

π
(A + B max(0, cos φi − φo) sin α tanβ)

α andβ offer the best possibility for computing an upper bound:

α = max(θi, θo)

β = min(θi, θo)

In contrast to the Lambertian BRDF this model also depends on the viewer’s directionωo. The interval
of θi has a lower bound of0 and an upper bound ofπ2 . Otherwise the illumination would arrive from
a position behind the surface. The viewing direction also suits the same interval. Therefore, it is just
necessary to find the minimum and maximumθ in the intervalθi and the angleθo that yields the
maximum value ofsinα tan β. There are three angle constellations, which can be observed in figure
5.1.

Figure 5.1: The incident light intervalθi and the viewing directionθo are used to bound the Oren-
Nayar BRDF. The minimum and maximum values are chosen to retrieve the maximum BRDF term.

38

5.3. STRATEGIES FOR THE HALFWAY VECTOR

The maximum reflection happens, when bothα andβ are as big as possible, because the sine and
tangent are monotone and continuous in the maximum possible interval[0; π

2). Taking the maximum
value of theθi andθo would be sufficient. To tighten the bound, the usage of the maximum possible
minimum is advised as shown in figure 5.1. Finally it is possible to denote the boundBON as follows:

BON (ωC, ωo) =
1

π
(A + B) sin α tan β

(a) θo = 0.2 (b) θo = 1.2

Figure 5.2: Two example plots of the Oren-Nayar bound with varying roughness (σ). In the left figure
the viewer’s direction in relation to the surface normal is very steep compared the example on the
right.

5.3 Strategies for the Halfway Vector

The Torrance-Sparrow microfacet model determines the maximum reflectionby the help of the
halfway vector. This vector is well known from the Phong lighting model, which is a simple ap-
proximation for calculating reflected light. The Phong model achieved its prominent status, due to its
easy nature and great results - without being physically correct at the same time. The model proposed
by Torrance and Sparrow simulates the reflection behavior of real surfaces much better by comparing
the halfway vector to the orientation of the microfacet. Since this reflection algorithm is mainly based
on this comparison, it is crucial to know the halfway vector. The lightcuts error estimation has to deal
with an interval of incident light directions. As a consequence, the halfway vector also points at a
certain range. So, the first task is to determine a bound for the possible halfway vector directionsωh

as illustrated in figure 5.3. The method depends on the type of light cluster. The following subsections
explain this for two bounding structures. The point of interest with respect to the Torrence-Sparrow
BRDF is to calculate the maximum angle between the viewing vector and the halfwayvector denoted
by max(θ∗h) and additionally the minimum angle between the surface normal and the halfway vector
min(θh). I will focus primarily on the computation of these two angles or rather their cosine, which
is equivalent due to their direct correlation.

39

CHAPTER 5. BOUNDING THE BRDF

Figure 5.3: Incident radianceωi arrives from light clusterB. In combination with the viewing direction
ωo a bunch of halfway vectorsωh is generated.θh is the interval of angles betweenn andωh, whereas
θ∗h is the interval of angles betweenωo andωh (compare to figure 5.3.

5.3.1 Bound For The Point Light Cluster

To bound the halfway vector, it is necessary to find its set of directions between a bounding box and the
viewing vector. A nice method for bounding the half-way vector was presented by Bruce Walter in his
paper called “Nodes on the Ward BRDF” from 2005 [26]. He describesa transformation into another
coordinate system where calculation of the minimum and maximum angle betweenωo and the bunch
of directionsωh can be done easily. The scenery is rotated in order to match the viewing direction
to the z-axis. Figure 5.4 shows a scenery where this transformation was applied. The relationship
between the incident light direction and the halfway vector can then be formulated as:

θ∗i = 2θ∗h

φ∗
i = φ∗

h

The star indicates the usage of a different coordinate system. At this pointit is already achieved to
bound the maximum and minimum angle between the viewing vector and the incident light direction,
as the bounding mechanism from 4.2.3 can be used again. The bound on thecosine returned by the
algorithm can then be used to calculate the half-angle bound with respect to the viewer’s direction:

40

5.3. STRATEGIES FOR THE HALFWAY VECTOR

Figure 5.4: A rotated coordinate system is used to boundθ∗h. ωo is used as z-axis, the surface normal
lies on the xz-plane.

cos θ∗h = cos
θ∗i
2

Applying the trigonometric formula for multiple angles this leads to:

cos θ∗h = ±
√

1

2
(1 + cos θ∗i)

It is safe to omit the negative sign in the previous equation, becauseθ∗i ∈ [0;π] and thereforeθ∗h ∈
[0; π

2].
After the minimumθ∗h has been determined, this leaves only theθh to be bound. It is the angle between
the surface normal and the halfway vector. This can be achieved by finding the maximum cosine of
the angle:

cos θh = h · n = h∗ · n∗

In the new coordinate system this can be expressed as:

cos θh =

(
sin θ∗

h
cos φ∗

h

sin θ∗
h

sin φ∗

h

cos θ∗
h

)

·
(

sin θ∗n cos φ∗

n

sin θ∗n sin φ∗

n

cos θ∗n

)

With the surface normal lying on the xz-plane (φ∗
n = 0) the equation can further be simplified:

cos θh =

(
sin θ∗

h
cos φ∗

h

sin θ∗
h

sin φ∗

h

cos θ∗
h

)

·
(

sin θ∗n
0

cos θ∗n

)

(5.1)

= sin θ∗h cos φ∗
h sin θ∗n + cos θ∗h cos θ∗n (5.2)

41

CHAPTER 5. BOUNDING THE BRDF

The angles of the transformed normaln∗ are fixed and result by applying the transformation matrix

to the initial surface normal direction
(

0
0
1

)

. The task is to find appropriate values forφ∗
h andθ∗h that

maximize the previous expression. It would be safe to replace theφ∗
h with its maximum possible value

of 1.0. Yet, it is necessary to find the maximumφ∗
h for the whole light clusterC, as the goal is to obtain

a bound as tight as possible. This can be done analogously to the way of bounding thecos θ in 4.2.3.
Figure 5.5 illustrates the idea.

Figure 5.5: Determining the maximum and minimum values forx andy leads to a bound for the angle
φ by using the Pythagorean equation.

The last step after the computation of themax(cos φ∗
h) is the selection of the appropriateθ∗h out of its

previously calculated interval. This can be achieved by calculating the derivative with respect toθ∗h
and finding the maximum:

∂〈h, n〉
∂θ∗h

= 0

0 = cos θ∗hmax(cos φ∗
h) sin θ∗n − sin θ∗h cos θ∗n

If this equation is solved forcos θ∗h ∈ [0; 1], there is one solution left:

cos θ∗h =

√

cos2 θ∗n
cos2 θ∗n + sin2θ∗n[max(cos φ∗

h)]2

It is still necessary to verify the solution, because the extremum could also be a minimum.

∂2〈h, n〉
∂(θ∗h)2

= − sin θ∗hmax(cos φ∗
h) sin θ∗n − cos θ∗h cos θ∗n

42

5.3. STRATEGIES FOR THE HALFWAY VECTOR

If the result of the second partial derivative is< 0 then the result is a maximum and it can be used
for the following step. Otherwise1.0 is used as upper bound. The solution forθ∗h andmax(φ∗

h) is
put into the equation 5.2. The final bound for the halfway vector can now be calculated. If all these
computations pay off - it depends. Especially computing theφ∗

h can be omitted by taking the upper
bound of1.0.

5.3.2 Bound For The Directional Light Cap

The creating of a bound for the light cap is much easier compared to the previous box bounding
approach. A bounding cap consists of a normalized direction vectorωi and an apex angleα. The
halfway bound is really simple. At first it is necessary to define the possiblehalfway directions. This
can be done by using the initial definition of the halfway vector and the direction vector of the cap:

ωh =
ωo + ωi

2

The apex angle for the halfway vector is half the apex angle of the incidentlight directions:

αh =
α

2

Now it is possible to calculate directly the minimum angle between the surface normal and the halfway
vector, denoted byθh and the maximum angle between the viewing vector and the halfway vector,
denoted byθ∗h:

min(θh) = arccos(n · ωh)− αh

max(θ∗h) = arccos(ωh · ωo) + αh

5.3.3 Microfacet Modell

All the previous preparation steps are needed to find a bound for the Torrance-Sparrow microfacet
model. The model uses this BRDF:

fr(p, ωi, ωo) =
D(ωh)G(ωo, ωi)Fr(ωo)

4 cos θo cos θi

The advantage of the model is the possibility to bound each term separately. All terms in the numerator
get maxed and the only variable term in the denominatorcos θi is bound for its minimum value. A
minimum bound for thecos θi can be calculated using the methods described in the previous chapter,
so it is just omitted here. Altogether this results in the final bound for the Torrance-Sparrow BRDF:

BTS(p, ωC, ωo) =
max(D(ωh))max(G(ωo, ωC))max(Fr(ωo))

4 cos θomin(cos θi)

The following three subsections describe the bounding mechanism of the three terms:

43

CHAPTER 5. BOUNDING THE BRDF

5.3.3.1 Max(D(ωh))

If the Blinn microfacet distribution is used, the upper bound forD(ωh) is:

D(ωh) =
e + 2

2π
(〈n, ωh〉)e

D(ωh) ≤ e + 2

2π
(max(cos θh))e

5.3.3.2 Max(G(ωo, ωi))

An upper bound for the geometric attenuation term G is:

G(ωo, ωC) = min

(

1, min

(
2(n · ωh)(n · ωo)

(ωo · ωh)
,
2(n · ωh)(n · ωi)

(ωo · ωh)

))

G(ωo, ωC) ≤ min

(

1, min

(
2max(cos θh) cos θo

min(cos θ∗h)
,
2max(cos θh)max(cos θi)

min(cos θ∗h)

))

5.3.3.3 Max(Fr(ωo))

The Fresnel function for the Torrance-Sparrow BRDF uses the halfway vector as replacement for
the surface normal. So, for the incident light direction, the interval of the angleθ∗h is applied. It was
discussed previously how to create a bound on this interval. This is why it is treated as already known
here. To solve the bound for the Fresnel term in a more general way, I denote the incident light
direction byθi and notθ∗h.
The Fresnel dielectrics term inherits the transmission angleθt. It depends on the materials participating
at the position where the light hits the surface. The sine of the reflection directionθt can be defined in
terms ofθi:

sin θt =
ηi

ηt
sin θi (5.3)

cos θt = ±
√

1− ηi

ηt
sin θi (5.4)

θt is defined to be the angle between the negative z-axis and the transmission direction, which has
to obey the interval[0; π

2]. It is just necessary to be sure that the transmitted light really enters the
material. Then the negative sign can simply be ignored. If the expression for cos θt is put into the
Fresnel dielectric equation from 2.1 the resulting equation gets really complicated. It gets even worse,
if the derivative is calculated and set to0 to determine the extrema. It is so complex, that I could not
solve it by hand - so, for the Fresnel dielectric term, I always use the upper bound of1.0. For the
Fresnel conductor term, it is much easier: It is worth to examine some example plots of the Fresnel
term for a few selected materials. I used theη andk values given by table 2.2.
As it can be observed in the plots in figure 5.6 it is very likely, that the Fresnel function has at most
one extremum in the interval[0; π

2]. This can be confirmed by determining its position. Since this
leads to a huge mathematical term with many solutions, it is better to examine the two functions for

44

5.3. STRATEGIES FOR THE HALFWAY VECTOR

(a) Gold (b) Silver

(c) Steel

Figure 5.6: Three example plots of the Fresnel term with different materials.The red curve demon-
strates the amount of reflected parallel polarized light. The green curve isthe equivalent for perpen-
dicular polarized light. The blue curve is the fresnel reflection for unpolarized light.

perpendicular and parallel polarized light separately. The partial derivative of the Fresnel equation for
parallel polarized light leads to the following equation:

∂r‖

∂θi
= −2η(−2η + k2 + η2 + (k2 + η2) cos(2θi)) sin θi

1 + 2η cos θi + (k2 + η2)(cos θi)2)2

If this equation is solved for its extrema, the following solutions are acquired:

∂r‖

∂θi
= 0

θi = ± arccos

(

± 1
√

k2 + η2

)

45

CHAPTER 5. BOUNDING THE BRDF

This results in four solutions. The plots show that it is very likely for one solution of θi to be situated
in the interval[0; π

2]. The next step is to analyze, the partial derivative of the fresnel equation for
perpendicular polarized light:

∂r⊥
∂θi

= −2η(1− 2k2 − 2η2 + cos(2θi)) sin θi

(k2 + η2 + 2η cos θi + (cos θi)2)2

Again, the first derivative is solved for the extrema:

∂r⊥
∂θi

= 0

θi = ± arccos(±
√

k2 + η2)

The procedure is quite the same as demonstrated with the parallel polarized light before. Yet there
is one important difference: the extremum is less likely to be in the interval[0; π

2]. This is the key
that allows bounding the fresnel term for conductors. If the extrema of the perpendicular polarized
light equation are outside of the interval(0; π

2), then the function is monotone inside. Of course, the
extrema can be precalculated for the initialization values ofη andk using the above formula to make
sure that this is definitely the case. The second assumption that the parallel polarized light equation
has a minimum inside the interval(0; π

2) does not harm the bounding procedure, because the goal is
to determine the maximum value in the range for a set of light directions defined by the help of the
incident light’s bounding structure. Therefore, it is sufficient to calculate the maximum for the two
limits of the given interval forθi.

46

5.3. STRATEGIES FOR THE HALFWAY VECTOR

(a) Gold (b) Silver

(c) Steel

Figure 5.7: The plots show the development of the first partial derivativewith respect toθi for the
Fresnel term with different materials. The red curve demonstrates the amount of reflected parallel
polarized light. The green curve is the equivalent for perpendicular polarized light.

47

CHAPTER 5. BOUNDING THE BRDF

48

Chapter 6

Algorithms for the Infinite Area Light
Source

The purpose of this chapter is to show the general usage of infinite area lights and how it is used in
combination with the lightcuts rendering system. Also, some algorithms are presented, which demon-
strate how to convert an infinite area light into a set of directional light sources.

6.1 Fundamentals of Infinite Area Light Sources

The infinite area light source is nothing else than a huge light source surrounding an entire scene. So,
there is just one infinite area light possible in each scene file. It can be imagined as a sphere casting
light from any direction into the scene. This method is commonly used to realisticallyilluminate
synthetic objects as if they were in a given environment. It requires of course, that someone actually
captured the illumination situation in this environment. For a good estimate of the illumination an
image with high dynamic range should be generated. Paul Debevec describes a method how this can
be done using standard digital photo equipment [5]. The data structure storing the light information
is mostly referred to aslight probeor radiance map. This image based lighting approach had a big
impact on the realism of computer graphics. The initial usage of environmentmaps was for reflection
mapping first introduced by Blinn and Newell in 1976 [3]. They used a self-drawn image representing
the environment of a room to illuminate the Utah teapot. Later on, the reflection mapping (also called
environment mapping) was used to efficiently simulate complex glossy and mirroring surfaces by the
help of a precomputed texture image. The method is widely used in up-to-date computer games and
other real time applications on recent raster-graphics based hardware. It works by looking up the
reflection direction in the environment map to calculate the color of the incident light at the rasterized
surface position. This is only done to simulate reflection effects, but not used for global illumination.
The PBRT ray tracer and other global illumination systems can use environment maps as infinite
area lights affecting the lighting of all objects, whether they are glossy or not. This means that diffuse
surfaces, which reflect received light from any direction, must samplethe light source in an appropriate
way and not just look up the reflection direction. The termradiance mapis generally used for the
storage texture of incident light in contrast toenvironment map.

49

CHAPTER 6. ALGORITHMS FOR THE INFINITE AREA LIGHT SOURCE

6.2 Data Storage for Infinite Area Lights

The radiance maps store incident light from all directions. They are accessed via spherical coordinates
(θ, φ), texture coordinates (u, v) or discrete integer coordinates (x, y) depending on the actual usage. I
tried to use the spherical representation as often as possible. A common representation for the radiance
map is the latitude-longitude mapping. That means, the map can be accessed via spherical coordinates,
as it is shown in figure 6.1. The mapping allows for partitioning the map into regions along the latitudes
and longitudes. This property is useful later on for the median cut algorithmto fractionise the light.

Figure 6.1: Environment map with latitude-longitude mapping.

6.3 Median Cut Algorithm for Infinite Area Lights

Paul Debevec presented a method to approximate an infinite area light source by using a predefined
number of point light sources. I adopted this technique to create representative distant light source for
the lightcuts rendering system. The idea of Debevec’s algorithm is to create lights at positions where
incident illumination is likely to occur. These directions are already given by the light probe image
itself! Light probe sampling already was the topic of many papers and research in the past. Beginning
with simple stratified sampling up to structured importance sampling by Argawal et al. [1], there are
many algorithms solving the sampling problem. The proposed method by Debevectampers with its
simplicity and well conditioned splitting behavior which creates regions with equal energy. Another
advantage is the option to use it as a progressive splitting algorithm, which canfurther refine a specific
region by splitting it again. A split result in 64 single lights by Debevec’s algorithm can be observed
in figure 6.2.

Figure 6.2: Split results obtained with the original median cut algorithm for lightprobe sampling.

50

6.3. MEDIAN CUT ALGORITHM FOR INFINITE AREA LIGHTS

Before I start to explain the split algorithm, it is necessary to know how to calculate the total radiance
emitted by a region. Therefore the light probe (usually available in ll mapping)is read at a per pixel
level. Each pixel of the light probe represents a differential solid angle on the sphere of incident light
directions. The extent of a pixel can be expressed in intervals forθ andφ:

Figure 6.3: Intervals for a pixel of a ll map.

The formula from 2.1.3 helps to calculate the solid angle for all the pixels. If thesolid angle (which is
equivalent to the size of the differential area of a pixel on the unit sphere) is multiplied by the emitted
radiance. The result is the relative emitted light energy from these directions of the light source:

ΦPix = AL

= (−φ1 + φ2)(cos θ1 − cos θ2) ∗ Y

The previous formula is an addition to the algorithm introduced by Debevec. He suggested to scale the
size of the patches simply by multiplying withcos θm. I think using the solid angle is a better measure.
The emitted radiance is most likely expressed asRGB value. Due to human perception anomalies it
is necessary to express the emitted light as weighted average of the color channels. By following an
ITU-Recommendation these weights areY = 0.2125R + 0.7154G + 0.0721B.
Meeting all the prerequisites, it is now possible to calculate the relative emitted light energy for each
pixel. This implies that the same can be done for the entire sphere of directionsjust as for a distinct
region. The proposed algorithm by Paul Debevec generates2n regions of similar energy and works as
follows:
The radiance emitted by the light source is calculated by summing up the radiancefrom all participat-
ing pixels in that particular region:

ΦRegion =
∑

pix

ΦP ix

In each summand the solid angle of the patch is used. Thus I recommend to precalculate the solid
angles used for scaling and store them in a table. The position of the light source is determined as the
center of the region:

51

CHAPTER 6. ALGORITHMS FOR THE INFINITE AREA LIGHT SOURCE

Algorithm 1 MEDIAN CUT ALGORITHM FOR LIGHT PROBESAMPLING(n)

Require: n ≥ 0

1: add entire light probe as singleregion to regionlist

2: for i = 0 to ndo
3: for all regions ∈ regionlist do
4: subdivide region along its longest dimension such that its light energy is divided evenly
5: add newregions to resultregionlist

6: end for
7: if i < n− 1 then
8: regionlist = resultregionlist
9: else

10: for all regions∈ resultregionlist)do
11: lights.add(GENERATELIGHT SOURCE(region))
12: end for
13: end if
14: end for

return lights

θm = θ1+θ2

2

φm = φ1+φ2

2

Lpos =
(sin θm cos φm

sin θm sin φm

cos θm

)

6.4 Improving the Position of the Light Sources

It is possible to improve the position of the light sources inside their region. The center is a good
approximation when the regions are already small. For big regions, imagine theentire image divided
only once, the center would be the direction all light energy is arriving from. This can yield a big
error, as in the image there might be a dark spot. This leaves some space fortwo methods which try
to improve this shortcoming.

6.4.1 Centroid

This is the first method, which tries to improve the position of the directional light source. The centroid
simulates the characteristic of a region much better than the center. Each patchon the sphere emits a
certain amount of radiance, which is precomputed and stored in an array for fast access. This algorithm
is used to calculate the centroid:

6.4.2 Random Sampling of the Spherical Patch

As an alternative to the centroid method, it is also possible to calculate a randomposition inside the
region, denoted byθr andφr. It can be used as a static position for the light source of even better

52

6.4. IMPROVING THE POSITION OF THE LIGHT SOURCES

Algorithm 2 CENTROID
1: for x = xmin to xmax do
2: for y = ymin to ymax do
3: accu← accu + radiance(x, y)

4: accux ← accux + x * radiance(x, y)

5: accuy ← accuy + y * radiance(x, y)

6: end for
7: end for
8: xcentroid ← accux

accu

9: ycentroid ← accuy

accu

re-evaluated for each lighting request. This makes the light source even less biased in a Monte Carlo
sense. To compute a random sample for the region, it is necessary to bearin mind that sampling a
spherical patch is not uniform. Unfortunately, built-in functions in programming languages can easily
create uniform distributed random integer values. Therefore the inversion method is used to map a
uniform random variable to the real distribution created by the properties of the spherical patch.
Much literature can be found about the correct sampling of a sphere. I already wrote about sampling
techniques in my student thesis work [17], so I will not repeat the basics of sampling theory here. The
presented method for sampling a spherical patch, is a modified version of thealgorithm introduced
by Matt Pharr and Greg Humphreys in a paper aboutimportance sampling of infinite area lights(see
[21]). The considered spherical patch has its extent in the intervals[φ1; φ2] and[θ1; θ2]. These intervals
represent a range of pixels of the radiance map, which can be interpreted as a 2D distribution function
f(u, v) over [u1, u2] × [v1, v2] (u1 < u2; v1 < v2; u, v ∈ N0). The solid angle of each pixel is then
accessible viaf(u, v) (u represents the column andv the row of the pixel). That is the key to define
the probabilityp(u, v) of a pixel to be picked, also called the probability density function (PDF) for
an outcome ofu andv:

p(u, v) =
f(u, v)

∑u2

u=u1

∑v2

v=v1
f(u, v)

It is the solid angle of a pixel divided by the total solid angle of the region. Ofcourse, the integral
over all probabilities equals one (

∫
p(u, v)), because one event is definitely happening. Gladly, the

spherical patches have the same size in each column, so the probability to pickeach column is the
same. This means the marginal density function for the columns is constant:

pu(u) =

∑v2

v=v1
f(u, v)

∑u2

u=u1

∑v2

v=v1
f(u, v)

=
1

u2 − u1

This definition helps to define the conditional density for the rows:

pv(v|u) =
f(u, v)

∑v2

v=v1
f(u, v)

53

CHAPTER 6. ALGORITHMS FOR THE INFINITE AREA LIGHT SOURCE

I previously mentioned the inversion method to map uniform random variables toa defined distribu-
tion. The method needs a cumulative distribution function (CDF) to work. A CDFF (x) is defined as
the probability of the random variableX to get a value less or equal tox. Therefore the probability
for x is accumulated with all previous probabilities:

Fv(x) = Pv(X ≤ x) =
x∑

v=v1

p(u, v)

The inversion method can now draw a sample by using a uniform random number ξ ∈ [0..1]. It is
compared to the function values of the CDF (which is monotone) and thus the initial x can be looked
up. In practice, an array is created which holds the accumulated probabilities up to thex-th element.
Then the values stored in this array can be searched forξ. The algorithm stops, when a value greater
or equal toξ was found and returns its position in the array. Afterwards, the value is transformed into
the correct sample position for the light source position. The source codefor this algorithm can be
looked up in 1

6.4.3 Dynamic Infinite Area Light for Lightcuts

In the process of implementing the lightcuts algorithm I thought much about the negative effects
of fixed, precomputed light trees. The dynamic generation of a light tree might be a much better
approach, because it can adapt to the needs of the rendered scene.I already knew the median cut paper
from P. Debevec and explored, if the algorithm could be used in a progressive way. In comparison
to a simple split-at-spatial-median algorithm, the proposed median cut algorithm uses the energetic
median as split position. This is a major advantage for the lightcuts error estimationroutine, since
after each split the error is at least bisected due to the direct correlation of error and a light’s emitted
energy. When the lightcuts renderer is started and an infinite area light is used, only two representative
lights are created: one for the upper and another one for the lower hemisphere. Each light stores some
information about its size, emitted radiance and representative direction. For any ray hitting a surface,
the lightcuts integrator starts evaluating the illumination by pushing the root nodesof the lights on
the lightcuts stack. If the error estimation routine decides that the representative light’s error is too
big, it will be refined. This is done by median cut splitting the light and adding it tothe infinite area
light tree at its appropriate position. Refinement can also be denied by the light source, if it already
reached a minimal predefined size. This can either be a predefined solid angle or simply a bound
given by the radiance map resolution. The dynamic trees help to reduce unnecessary preprocessing
time. Additionally, it is possible to use very high resolution environment maps andsample them
dynamically! Most ray tracers always use a fixed number of infinite area light source samples. The
lightcuts system decides by the help of the error estimation for any hit surface how many samples are
necessary to stay within a predefined error bound.

6.4.4 Comparison of Dynamic Light Trees after Rendering

Figure 6.4 shows the radiance map used to illuminate the scene in figure 6.5. Thescene was rendered
with the three different light sample strategies described in the previous sections. This results in a

54

6.4. IMPROVING THE POSITION OF THE LIGHT SOURCES

change of sample positions as visualised by the plots in figure 6.6. The data used for the plots are
the leaf node positions of the dynamic light tree created while rendering: i.e. the fully expanded tree
without the positions of the representative lights. Figure 6.6(a) shows the results for using thecenter
of the regions which leads to samples situated at rather grid-like positions. The centroid strategy
creates samples next to brighter regions. This can be easily observed bywatching the samples at the
lower hemisphere (θ > π

2). In comparison to the previous center strategy image, the lonely samples
disappear because the lower hemisphere of the radiance map is entirely black. The last figure 6.6(c)
shows the result for using the staticrandomsampling strategy. Of course, this looks different for each
rendering process, since the sample positions are drawn randomly. All strategies have in common to
create a light tree with heavily sampled bright regions, due to a high potential error introduced by
very bright light sources. A further discussion with respect to the qualityof the rendered images can
be obtained in chapter 8.

Figure 6.4: Sunset radiance map.

Figure 6.5: Scene with two spheres illuminated by the sunset radiance-map.

55

CHAPTER 6. ALGORITHMS FOR THE INFINITE AREA LIGHT SOURCE

(a) Center

(b) Centroid

(c) Random

Figure 6.6: Samples created by three different strategies.

56

Chapter 7

The PBRT Rendering System

The PBRT rendering system is a full featured ray tracer. It accompanies Matt Pharr’s and Greg
Humphrey’s book on physically based rendering [22]. The ray tracerwas initially used for didac-
tic purposes in a computer science course at Stanford University. Overthe years it evolved to a robust,
rendering system with rich features. I chose it for my own implementation, because it is plugin-based,
extremely well documented and extensible. To be able to integrate the lightcuts idea, it was necessary
to understand how PBRT works in the first place. This chapter gives a rough overview of the system
and additionally some implementation details of the lightcuts integrator.

7.1 General Overview

The basic mode of operation is demonstrated in figure 7.1.

Figure 7.1: Diagram for PBRT’s main rendering loop.

Rendering is started in the main render loop by retrieving samples for each image sample from the
Sampler. TheCameratakes a sample and generates a ray direction. Then the ray direction is given to
the Integrator, which calculates the radiance arriving for this direction. TheFilm stores the retrieved
radiance in an image. Rendering is complete when theSamplercreated enough samples to generate
the final image. All the components are abstractions with an interface. Thus they may be replaced by
an algorithm fitting the minimal interface requirements. Therefore PBRT is realized as a rendering
core with additional plugins. Less memory consumption is another advantage of this structure: The
program dynamically loads the plugins it needed and leaves out unnecessary ones.

57

CHAPTER 7. THE PBRT RENDERING SYSTEM

7.2 Integrators

The most interesting part of the PBRT rendering system are the integrator plugins. They handle rays
shot into the scene and need to determine the radiance. Of course, this is also an abstraction for all
ray casting based algorithms. In version1.02 of the ray tracing system there already exist integrators
for bidirectional path tracing, direct lighting, photon mapping, irradiance cachingand the original
Whitted algoritm. The general functionality of an integrator can be looked up in figure 7.2.

Figure 7.2: The diagram shows the class relationship of the Integrator abstraction.

A ray created by the camera and sent by the main rendering loop is processed by the integrator to
obtain the radiance along that ray. That is the task for the integrator: find the closest object the ray
intersects with. This can be done by asking theAccelerator. It is an abstraction for all objects situated
in the scene. Testing each object separately is very expensive, so bounding structures are used to
speed up this process. If an object was determined, the result is returned as anIntersection. This is an
abstraction to store properties of the intersected surface. By the help of the GetBSDF()method these
properties are evaluated to add the material properties for the intersection point. TheLightsare used
to calculate the illumination. Finally the accumulated reflected radiance for the rayis returned to the
main rendering loop.

7.3 Direct Lighting Integrator

The direct lighting integratoris a rather simple method to approximate the LTE. I introduced the
theory already in chapter 3. To be able to start with the lightcuts implementation, it isessential to know
how shading is done by the direct lighting integrator. Remembering the direct lighting approximation,
it is possible to break the LTE down into a sum over all lights in the scene:

∑

l

∫

S

fr(p, ~ωo, ~ωi)Ld(l)(p, ~ωi) cos θi d~ωi

To estimate the direct lighting integral for one light, it is necessary to choose directions for sampling
the light source and the BSDF. Sampling can be done efficiently by using multipleimportance sam-
pling thus incident light directions and reflective BRDF directions are generated.Importance sampling
is a method for estimating integrals generally faster compared to the Monte Carlo method. Plenty of

58

7.4. LIGHTCUTS INTEGRATOR PLUGIN

work has been done to explore sampling strategies. The interested readermay look it up in [22], [17]
or [1]. The problem can be simplified, if the participating light sources aredelta lights. Then the light
source direction is fixed, because light is received from only one direction. The pseudo code 3 explains
how lighting with delta lights is done:

Algorithm 3 DIRECT LIGHTING(ray)

1: L = 0.0

2: if ray intersectsobject then
3: calculateintersection

4: L+ = emittedlight by intersectedobject
5: for all lights ∈ scene do
6: L+ = BSDF ∗ Li ∗ cos θi/lightpdf

7: end for
8: if actualraydepth < maximumraydepth then
9: if BSDF is reflecting lightthen

10: L+ = DIRECT LIGHTING(reflected ray)
11: end if
12: if BSDF is refracting lightthen
13: L+ = DIRECT LIGHTING(refracted ray)
14: end if
15: end if
16: else
17: L = background

18: end if

7.4 Lightcuts Integrator Plugin

This section informs about the general functionality of the lightcuts integratorplugin. Thelightcuts
integratorwas developed in several steps.

7.4.1 Preprocess()

At first I implemented a preprocessing method to ensure that all lightcuts compatible light sources
are detected and appropriate light trees are built. ThePreprocess() method of an integrator is
called after the scene file was parsed completely and all objects have been instantiated. By checking
all lights it is possible to determine lightcuts compatible light sources: point lights anddistant lights.
It would also be possible to use explicit lightcuts lights, but then existing scenefiles could not be
used by simply switching the integrator. If an infinite area light is used for lighting, this is different
and must be explicitly changed in the scene description due to dynamic tree expansion. To be able to
modify the light tree while rendering, the integrator needs to access the light for retrieving new child
nodes. That is generally impossible with PBRT’s plugin design, because plugins can only access each
other via basic interface classes defined in the rendering core. Afterwards, the preprocessing method

59

CHAPTER 7. THE PBRT RENDERING SYSTEM

generates aLightTree for each light type. This involves generating akd tree for point lights and a
minimal binary tree for the dynamic infinite area light tree as well as a binary treefor distant lights.
Tree generation is started by calling thebuildTree() method of the adequateLighTree.

7.4.2 doLightcut()

The second step was the adjustment of the direct lighting integrator to use lighttrees instead of real
light sources. The direct lighting code calls thedoLightcut() method to evaluate the lighting at
the intersection point. This is done separately for each available light tree. Evaluation begins by in-
serting the root node into the lightcuts queue, which is used to store the actualparticipating nodes of
the light tree. At this point the functionestErr() is called to calculate the maximum possible error
introduced by using the representative light of the actual node instead ofthe real ones. It depends on
the result of the error term how the algorithm continues. If the error is below the predefined perceptual
threshold, the representative light is used for the lighting calculation and completely evaluated. Other-
wise, the children of the light node are added to the lightcuts queue and the error estimation algorithm
starts again for those. The methoderstErr() uses the intersection point with its surface normal,
the direction of the ray and additional information from the light nodes to determine the error. Each
component of the final term is computed separately. For computing an approximation of the material
term thebsdf->BRDFBound() method is called. The implementation was realized in a third step
in the global reflection classBSDF.

Algorithm 4 DO LIGHTCUT(ray)

1: workqueue.insert(lighttree.root)
2: lightqueue.clear();
3: while workqueue not emptydo
4: light = workqueue.pop();
5: error = CALL ESTIMATEERROR(light)
6: if error ≤ perceptualthresholdthen
7: lightqueue.push(light).
8: else
9: workqueue.push(light.children)

10: end if
11: end while
12: for all light ∈ workqueuedo
13: L+ = EvaluateDirectLighting forlight

14: end for

7.4.3 Helpers of the Lightcuts Integrator

Several classes and methods are used to assist the lightcuts integrator.

60

7.4. LIGHTCUTS INTEGRATOR PLUGIN

7.4.3.1 Lighttree

TheLighttree class and derived classes for each type of light tree are used to intially build and
finally delete it. Especially theInfiniteLighttree has a methodextendTree() to dynam-
ically create new child nodes if necessary. The generation of representative lights is also realized in
theLighttree class.

7.4.3.2 InfiniteAreaLightLC

TheInfiniteAreaLightLC implements the infinite area light for lightcuts. It reads a HDR light
map in.exr file format to generate new median cut sampled representative distance lights. The light
source position is determined by using one of the following four different strategies:mid, centroid,
staticrandom anddynamicrandom. The latter differ in dynamic vs static placement of the light’s
position.

7.4.3.3 DistantLightLC

Special distant lights are used in the infinite area light tree. EachDistantLightLC knows its rep-
resentative extent on the light map. The constructor creates the boundingcap by the help of the pro-
cedure described in chapter 4. The methodboundCosTheta(const Normal& n, Vector*
wi) computes the bound for the cosine ofθ.

7.4.3.4 Modifications to the core

Bounding the BRDF works best, when it is done in the BRDF coordinate system. Therefore, the re-
quired methods have been implemented in the basic reflection classBSDF. Each lightsource type uses
its own function to bound the bsdf term. The methodBRDFBound() is called with a referenced data
structure for exchanging related information. Because PBRT uses a wrapper class to enable multiple
BRDFs for a surface, theBRDFBound collects the bounds of all participating BRDFs. If a reflection
model is not yet supported, it returns an upper bound of1.0 by default. Otherwise the bound on the
BRDF is calculated by calling thebound() method. Additional modifications were necessary on
the default light interface, since the PBRT developer designed it for shading and not for light object
modifications.

61

CHAPTER 7. THE PBRT RENDERING SYSTEM

62

Chapter 8

Results and Discussion

This chapter is denoted to present rendering results for selected scenes. It shows the major achieve-
ments of the lightcuts algorithm. Additionally, I will also discuss some disadvantages and draw a
conclusion indicating aspects to be further investigated.

8.1 Benchmarks and Evaluation

All scenes were rendered by an Intel Pentium M machine with 1400 Mhz core clock and 512 MB
of RAM using Ubuntu/Linux. I created and rendered some scenes with manylight sources, to show
the benefits of the algorithm, i.e, the reduction of shadow-rays in comparisonto the standard direct
lighting integrator.

8.1.1 Scenes with many Light Sources

The first examined scene visualizes three balls with different materials and isrendered with one pri-
mary ray for each pixel. The left one uses a perfectly diffuse material (Lambertian BRDF), the middle
one uses a material similar to plastic (Oren-Nayar BRDF) while the right one uses a shiny metal
(Torrance-Sparrow BRDF). Figure 8.1 shows the scene rendered with direct lighting and the estimate
by using the lightcuts integrator. The following table presents the data obtained by rendering the scene:

Point Lights Shaded Points Shadow Rays Shadow Rays Per SampleImage Time

10006 63.9k 5.765M 90,2 76.7s
10006 63.9k 374.454M 5860 1389.7s

Table 8.1: Scene1, rendered in a resolution of 300x200. The object parameters used for the spheres:
Oren-Nayarσ = 0.15, Microfacet(Blinn)e = 45.3kr = (0.7, 0.7, 07)ks = (0.5, 0.45, 0.35).

This scene uses a setting with almost perfect preconditions for the lightcuts method. The number of
lights is very high, which enables efficient clustering. In comparison to direct lighting using each
light source separately, the lightcuts method can often use the representative light to generate the final
image. This leads to over fifty times less the number of shadow rays which results in impressively

63

CHAPTER 8. RESULTS AND DISCUSSION

reduced rendering time. Even a close examination of both images reveals no visible error. The dif-
ferential image from figure 8.1 shows a strong enhancement of the errorintroduced by the clusters.
This phenomenon meets the expectations, which were already described byWard et al. in the lightcuts
paper [28]. The observed error appears to be greater in very bright regions.

64

8.1. BENCHMARKS AND EVALUATION

(a) Reference image

(b) Image generated with lightcuts

(c) Differential image with magnified error

Figure 8.1: Three images showing a scene rendered with direct lighting andlightcuts. The maximum
allowed error threshold was set to0.01.

65

CHAPTER 8. RESULTS AND DISCUSSION

8.1.2 Modifying the Error Threshold

By noticing the magnified error in the previous section it seems appropriate to analyse the expansion
with different error threshold values. Figure 8.2 illustrates the visual effects by increasing the light-
cuts’ error threshold. The accompanying table 8.2 demonstrates the change in shadow ray count and
rendering time:

error threshold Shadow Rays Shadow Rays Per SampleImage Time

0.01 5.765M 90,2 76.7s
0.02 4.045M 63,3 56.4s
0.04 2.917M 45,6 41.2s

Table 8.2: The settings are equal to those in in 8.1. The scene uses 10006 light sources.

(a) error threshold set to 0.02 (b) error threshold set to 0.04

(c) Differential image with magnified error,
threshold set to 0.2

(d) Differential image with magnified error,
threshold set to 0.4

Figure 8.2: Modulation of the error threshold leads to increasing error and thus reduced quality.

Unlike the previously rendered image, where no visible error could be determined, these images prove
that the error threshold must be chosen carefully. Additionally, the errorvaries in both images due to
random positioning of the light sources duringkd tree building. In default mode thekd-tree builder
selects one of the children’s positions to be the representative light’s coordinates. This explains the
visible discrepancy between the differential images as it can be seen in figure 8.2(a) compared to
figure 8.2(b).

66

8.1. BENCHMARKS AND EVALUATION

8.1.3 Using Lightcuts for Optimal Area Light Sampling

The second scene uses100, 1000, 10000 and 100000 individual lights to simulate an area light
source above the two killeroo models. One of the models uses diffuse reflection and the other one
the Torrance-Sparrow microfacet model. Table 8.3 shows render results in numbers:

Point Lights Shaded Points Shadow Rays Shadow Rays Per SampleImage Time

100 43.5k 2.911M 66,9 32.0s
1000 43.5k 2.471M 56,8 38.1s

10000 43.5k 2.475M 56,9 41.1s
100000 43.5k 2.474M 56,9 45.9s

Table 8.3: Scene2, rendered in a resolution of 200x200 and an error threshold of 0.01.

The results show that the lightcuts algorithm efficiently avoids to oversample thearea light. The num-
ber of light sources is irrelevant as long as its total count is sufficient. Even 100 light sources are
sufficient to generate perfect soft shadows. Error bounds enablethe algorithm to decide for itself how
far it needs to descend the light tree to select the right number of samples. This is an important proof
that the algorithms works as expected, because the number of shadow rays stays almost the same. The
slight rise in rendering time is due to additional preprocessing effort. Lighttree building uses up more
time while the pure rendering time almost stays the same.

(a) 100 light sources (b) 1000 light sources (c) 10000 light sources

Figure 8.3: The scene is rendered with an increasing number of light sources representing an area light
above the models.

8.1.4 Using Lightcuts for Infinite Area Lights

My lightcuts implementation replaces the infinite area light by a dynamic light tree, which inherits
distant lights to represent the illumination situation. The method of sampling the IAL has already
been explained in chapter 6. I produced example renderings to demonstrate the pros and cons of the
lightcuts method. Figure 8.4(a) shows the reference scene using thedaylight radiance map. It was
rendered with the direct lighting integrator using one eye ray per pixel. To obtain optimal reference
images, I gradually increased the number of samples until no perceptual image noise was left. Since

67

CHAPTER 8. RESULTS AND DISCUSSION

random sampling is not a good competitor to the lightcuts integrator, I also used the importance
sampler plugin from Pharr and Humphreys [21] for benchmarking. Evaluation of the results is very
subjective due to a light brightness scaling factor necessary to compensate the power heuristics used
by PBRT for sampling light sources and BRDFs. Nevertheless, the lightcutsmethod has the advantage
of automatically using the necessary samples for an intersection position to be illuminated correctly.
In contrast to this, the number of samples used by importance sampling and random sampling is
generally predefined. This enables lightcuts to generate almost perfect results, if the error threshold is
selected carefully. Importance sampling trusts in the predefined sample count, which can be chosen
low for radiance maps using only one or few bright regions like the daylight setting in figure 8.4(a).
If the radiance map uses many bright regions, the same number of samples willnot be sufficient for a
noise free image as seen in figure 8.6.

IAL-sampler Shaded Points Shadow Rays IAL-Samples Image Time

importance 38.4k 4.427M 100 46.9s
random 38.4k 68.631M 1000 306.8s

lightcuts 38.4k 13.014M variable 112.0s

Table 8.4: Difference in rendering time for a high quality image.

(a) Importance sampling (100) (b) Random sampling (1000) (c) Lightcuts (error thresh=0.01)

Figure 8.4: Two shperes rendered with different sampling techniques using the daylight radiance map.

IAL-sampler Shaded Points Shadow Rays IAL-Samples Image Time

importance 33.3k 3.716M 100 52.0s
lightcuts 33.3k 14.184M variable 118.8s

Table 8.5: Render statistics for lightcuts vs importance sampling.

Table 8.5 shows the necessary rendering time and shadow ray count pershaded point, which is equal
to the average number of light source samples for all available settings. As expected, the random
sampling method performs worst. It uses as many as 1000 samples to create animage free from noise.
Importance sampling seems to be twice as fast as lightcuts for many tested scenes Due to efficient
selection of bright regions and correct stochastic evaluation the image converges to a good result with
fewer samples. This deficiency of the lightcuts’ IAL implementation will be examined in the next

68

8.1. BENCHMARKS AND EVALUATION

(a) Importance sampling (100) (b) Lightcuts

Figure 8.5: Images rendered with importance sampling and lightcuts using the galileo radiance map.

(a) Importance sampling (100) (b) Lightcuts

Figure 8.6: Magnified image area to show the weakness of importance samplingwith a fixed sample
count. The contrast of both images was slightly increased to visualize the difference in the printout.

subsection.

8.1.5 The Sampling Weakness of the IAL

The median cut algorithm for light probe sampling generates samples in regions of equal light energy.
This results in big dark regions represented by only a few lights. In some cases this leads to shadow
artifacts. If the error threshold it set too low, the lightcuts algorithm cannotdetermine this error,
because it is introduced by multiple nodes. This can be seen as worst casescenario for lightcuts, since
it provides a stochastic error bound rather than an absolute one. Figure8.7 shows a rendered image
with an error threshold set to0.2.

69

CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.7: The image shows the IAL’s sample weakness due to high error threshold.

8.1.6 Visualizing the Size of a Cut

It is very interesting to examine how many light nodes are used to calculate the approximated illu-
mination of a pixel. Figure 8.8 and 8.9(b) show the number of shadow rays used for scenes 8.1 and
8.9(a). As expected, bright parts of the scene use a large number of shadow rays to avoid a big error
whereas darker parts use only few shadow rays.

Figure 8.8: Point light scene cut size

70

8.2. CONCLUSION

(a) IAL scene

(b) IAL scene cut size

Figure 8.9: Visualized cut size: brighter means more shadow rays.

8.2 Conclusion

The task for this thesis was to implement and analyse the lightcuts algorithm, which approximates the
illumination by clustering light sources. Additionally, a method is proposed to handle large radiance
maps by using a dynamic light tree. I will summarize the topics examined:

• The lightcuts algorithm with basic functionality was implemented as a PBRT plugin. The imple-
mentation was more complicated than initially expected due to PBRT’s encapsulatingdesign. It
finally resulted in interface changes to its rendering core.

• For efficient generation of point light trees, a kd-trie cluster algorithm was developed and im-
plemented. It also supports creation of representative lights and a bounding structure for each
light node.

• The theoretical background for lightcuts’ error estimation was examined. This includes the

71

CHAPTER 8. RESULTS AND DISCUSSION

derivation of a bound on thecos θ as well as the bound on three BRDF models. Therefore a
method for bounding the halfway vector had to be analysed and implemented. The findings can
be used as basis for future work.

• An adaptive light tree for infinite area lights was designed and implemented using the median
cut algorithm. The light tree supports four different flavors of sample position generation.

• Several mathematical obstacles were introduced by the dynamic infinite area light tree. Since
nodes represent light arriving from spherical patches, it was not possible to calculate the error
approximation with reasonable effort. The bounding cap and its generationwas developed and
implemented to ease computation.

The initial findings of the lightcut paper [28] could be confirmed. Rendering time for scenes with a
large set of light sources is significantly reduced by using the lightcuts approach. This works especially
well for clustered point lights as demonstrated previously in this chapter. Rendering time increases
logarithmic with the number of participating point lights due to the lightcuts behavior of error driven
shadow ray usage. In contrast to this, the infinite area light performancewas quite disappointing,
since I expected it to be always faster than importance sampling of the radiance map. This is mainly
due to the selected progressive energy median splitting algorithm, which can result in undersampled
regions. As a consequence, the general error threshold has to be very conservatively chosen to obtain
images yielding no visible error. Of course, this results in additional rendering time. In comparison to
importance sampling the lightcuts method offers the benefit to generate noise-free results independent
of the used radiance map. I think, it would be worth the effort to explore thepossibility to combine
both methods: i.e. using lightcuts to estimate the samples needed for a good resultand afterwards
sampling the radiance map by using multiple importance sampling. Presumable, this willreduce the
problem with undersampled areas.

8.3 Future Work

There are several interesting directions left, which could be explored further. My lightcuts implemen-
tation could be extended to improve anti-aliasing efficiency. This could be done easily, if intersection
information is used by all sample rays shot for one pixel. If the hit surfaceis the same or extremely
similar in angle and material, it is possible to share the error information and thus reduce time for
error estimation. Additionally, this also leads to a reduced shadow ray countper sample. Most of the
time this is anti-aliasing for (almost) free - similar to other adaptive anti-aliasing algorithms. The lim-
itation of maximum descent in the light tree is another idea to improve rendering speed, especially
when it is more important to be fast than accurate. Priority queues can be used to split those nodes
first, which yield a high error. This should generate fast and accurate results, because nodes producing
large possible error are replaced first. The most important extension to thelightcuts implementation is
the support of real global illumination. So far, diffuse inter-reflection is not possible with direct light-
ing, which would be an interesting feature. Alexander Keller’s instant radiosity algorithm [15] could
be used to enable indirect lighting for diffuse materials. Due to its mode of operation to distribute
point lights to generate indirect illumination, it fits the lightcuts approach perfectly.

72

Appendix A

Source Code Snippets

A.1 Random Sampling of Spherical Patches

Listing 1 Random Sampling of Spherical Patches

1 Sphe r i ca lSamp le (i n t xmin , i n t xmax , i n t ymin , i n t ymax){
2

3 f l o a t u = RandomFloat () ;
4 f l o a t v = RandomFloat () ;
5

6 / / f i n d ou t t h e range f o r t h e y−v a l u e s
7 f l o a t kummin = m Valskum [ymin] ;
8 f l o a t kummax = mValskum [ymax] ;
9 f l o a t kumdi f f = kummax− kummin ;

10

11 / / Sca le v t o cover t h e e n t i r e range
12 v ∗= kumdi f f ;
13

14 / / Make s u r e t h e s e a r c h wi th v s t a r t s a t t h e c o r r e c t p o s i t i o n
15 v += kummin ;
16

17 / / app ly t h e i n v e r s i o n method by f i n d i n g t h e x th e lemen t i n t he cd f
18 f l o a t ∗ p t r = s t d : : lower bound (m Valskum+ymin , mValskum+ymax+1 , v) ;
19 i n t o f f s e t = (i n t) (p t r−m Valskum−1) ;
20

21 / / s c a l e t h e t a and ph i t o match s p h e r i c a l c o o r d i n a t e s
22 t h e t a = o f f s e t ∗ m i n v h e i g h t ∗ M PI ;
23 ph i = (xmin + u ∗ (xmax−xmin)) ∗ m invwid th ∗ TWOPI ;
24 }

73

APPENDIX A. SOURCE CODE SNIPPETS

A.2 kd-Trie Generation

Listing 2 Random Sampling of Spherical Patches

1 KdTreeLC<NodeData , LookupProc>r e c u r s i v e B u i l d (u i n t nodeNum ,
2 i n t s t a r t , i n t end ,
3 vec to r<c o n s t NodeData∗> &bu i ldNodes) {

4

5 / / C r e a t e l e a f node of kd−t r e e
6 i f (s t a r t + 1 == end) {
7 nodes [nodeNum] . i n i t L e a f () ;
8 nodeData [nodeNum] =∗ bu i ldNodes [s t a r t] ;
9 r e t u r n ;

10 }

11 BBox bound ;
12 / / Compute bounds of d a t a from s t a r t t o end
13 f o r (i n t i = s t a r t ; i < end ; ++ i)
14 bound = Union (bound , bu i ldNodes [i]−>p) ;
15

16 / / Use t h e bounding box ’ s maximum e x t e n t as s p l i t a x i s
17 i n t s p l i t A x i s = bound . MaximumExtent () ;
18 i n t s p l i t P o s = (s t a r t +end) / 2 ;
19 / / S o r t e l emen ts by t h e s e l e c t e d s p l i t a x i s
20 s t d : : n t h e l e m e n t (& bu i ldNodes [s t a r t] , &bu i ldNodes [s p l i t P o s] ,
21 &bu i ldNodes [end] , CompareNode<NodeData>(s p l i t A x i s)) ;
22

23 / / c r e a t e i n t e r n a l kd−t r e e node
24 nodes [nodeNum] . i n i t (bu i ldNodes [s p l i t P o s]−>p [s p l i t A x i s] , s p l i t A x i s ,NULL) ;
25 nodeData [nodeNum] =∗ i n tNodes [nex tF ree In tNode ++] ;
26

27 / / Copy t h e bounding box i n t o t h e i n t e r n a l nodes Data
28 nodeData [nodeNum] . bound = new BBox (bound) ;
29

30 i f (s t a r t < s p l i t P o s) { / / R e c u r s i v e c a l l f o r rema in ing l e f t c h i l d r e n
31 nodes [nodeNum] . h a s L e f t C h i l d = 1 ;
32 u i n t chi ldNum = nextFreeNode ++;
33 r e c u r s i v e B u i l d (childNum , s t a r t , s p l i t P o s , bu i ldNodes) ;
34 }

35 i f (s p l i t P o s < end) { / / R e c u r s i v e c a l l f o r rema in ing r i g h t c h i l d r e n
36 nodes [nodeNum] . r i g h t C h i l d = nextFreeNode ++;
37 r e c u r s i v e B u i l d (nodes [nodeNum] . r i g h t C h i l d , s p l i t P o s ,
38 end , bu i ldNodes) ;
39 }

40

41 / / A f t e r c h i l d r e n c r e a t i o n , c r e a t e a r e p r e s e n t a t i v e l i g h t
42 NodeData : : bu i ldRep (&nodeData [nodeNum] , &nodeData [nodeNum +1] ,
43 &nodeData [nodes [nodeNum] . r i g h t C h i l d]) ;
44 }

74

A.3. LIGHTCUT ALGORITHM

A.3 Lightcut Algorithm

Listing 3 Lightcut algorithm for point light sources

1

2 queue<u i n t > workqup ls ; / / Work Queue
3 queue<KDLightEl∗> l i g h t q u p l s ; / / L i gh t Queue
4

5 / / S t a r t e v a l u a t i o n i f t h e p o i n t l i g h t t r e e e x i s t s
6 i f (po in tLT) workqup ls . push (rootPL) ;
7

8 / / As long as p o t e n t i a l nodes a r e l e f t i n t h e queue
9 w h i l e (workqup ls . s i z e ()> 0) {

10

11 / / r e c i e v e l i g h t
12 u i n t nodeNum = workqup ls . f r o n t () ; workqup ls . pop () ;
13 KDLightEl ∗ a c t = pointLT−>LookupL ightE l (nodeNum) ;
14

15 / / Use l e a f nodes d i r e c t l y f o r l i g h t i n g
16 i f (! ac t−>bound) {

17 l i g h t q u p l s . push (a c t) ; c o n t i n u e ;
18 }

19

20 f l o a t e s t e r r o r = estErrNPL (ac t , bsdf , p , wo , n) ;
21

22 / / n e g a t i v e e r r o r i s r e c i e v e d i f l i g h t from a c l u s t e r i s
23 / / c o m p l e t e l y a r r i v i n g from beh ind
24 i f (e s t e r r o r < 0 .0) c o n t i n u e ;
25

26 / / t h e node i s d i r e c t l y used f o r l i g h t i n g i f t h e e r r o r i s s m a l le r
27 / / t han t h e p r e d e f i n e d e r r o r t h r e s h o l d
28 i f (e s t e r r o r < e r r o r t h r e s h) {
29

30 l i g h t q u p l s . push (a c t) ;
31

32 } e l s e {

33 / / Rec ieve t h e c h i l d r e n o f t h e node
34 u i n t ∗ cdrn = pointLT−>g e t C h i l d r e n (nodeNum) ;
35 i f (cd rn [0]) {

36 i f (cd rn [0]) workqup ls . push (cdrn [0]) ;
37 i f (cd rn [1]) workqup ls . push (cdrn [1]) ;
38 d e l e t e [] cd rn ;
39 } }

40

41 / / C a l c u l a t e d i r e c t l i g h t i n g f o r c o l l e c t e d l i g h t s o u r c e s
42 w h i l e (l i g h t q u p l s . s i z e () > 0) {

43 L PL += e s t i m a t e D i r e c t L C (l i g h t q u p l s . f r o n t ()−>r epL igh t , p , n , wo ,
bsd f) ;

44 l i g h t q u p l s . pop () ;
45 }

75

APPENDIX A. SOURCE CODE SNIPPETS

76

Bibliography

[1] S. Agarwal, R. Ramamoorthi, S. Belongie, and H. Jensen. Structuredimportance sampling of
environment maps, 2003.

[2] Arthur Appel. Some techniques for shading machine renderings of solids. InAFIPS Spring Joint
Computer Conference, pages 37–45, 1968.

[3] J. F. Blinn and M. E. Newell. Texture and reflection in computer generated images.Communi-
cations of the ACM, 19(10):542–547, October 1976.

[4] James F. Blinn. Models of light reflection for computer synthesized pictures. InSIGGRAPH
’77: Proceedings of the 4th annual conference on Computer graphicsand interactive techniques,
pages 192–198, New York, NY, USA, 1977. ACM Press.

[5] P. Debevec and J. Malik. Recovering high dynamic range radiance maps from photographs,
1997.

[6] Paul Debevec. http://www.debevec.org/probes/.

[7] Paul Debevec. Rendering synthetic objects into real scenes: Bridging traditional and image-
based graphics with global illumination and high dynamic range photography.Computer Graph-
ics, 32(Annual Conference Series):189–198, 1998.

[8] Paul Debevec. A median cut algorithm for light probe sampling. InSIGGRAPH ’05: ACM
SIGGRAPH 2005 Posters, page 66, New York, NY, USA, 2005. ACM Press.

[9] Manfred Ernst. Photo-realistic rendering on programmable graphicshardware. Diploma thesis,
University of Erlangen-Nuremberg, Erlangen, July 2003.

[10] James A. Ferwerda, Sumanta N. Pattanaik, Peter Shirley, and Don Greenberg. A model of visual
adaptation for realistic image synthesis. InSIGGRAPH 1996, pages 249–258, 1996.

[11] Rob Shakespeare Greg Ward, Larson Shakespeare.Rendering With Radiance: The Art And
Science Of Lighting. Booksurge Llc, 2004.

[12] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, andPat Hanrahan. A practical model
for subsurface light transport. InProceedings of ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, pages 511–518, August 2001.

77

Bibliography

[13] J.T. Kajiya. The rendering equation. InACM SIGGRAPH ’86 Proceedings, vol.20, pages 143–
150, 1986.

[14] A. Keller. Quasi-monte carlo methods in computer graphics: The globalillumination problem,
1995.

[15] Alexander Keller. Instant radiosity. InSIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, pages 49–56, New York, NY, USA,
1997. ACM Press/Addison-Wesley Publishing Co.

[16] Alexander Keller.Quasi-Monte Carlo Methods for Photorealistic Image Synthesis. PhD thesis,
University of Kaiserslautern, Kaiserslautern, June 1997.

[17] Thomas Kemmer. Globale beleuchtungsberechnung in virtuellen szenen. Student thesis, Uni-
versity of Erlangen-Nuremberg, Erlangen, September 2005.

[18] Tomas M̈oller and Eric Haines.Real-Time Rendering. A K Peters, Natick, Massachusetts, 1999.

[19] F.E. Nicodemus, J.C. Richmond, and J.J. Hsia. Geometric considerations and nomenclature for
reflectance. 1977.

[20] Michael Oren and Shree K. Nayar. Generalization of Lambert’s reflectance model.Computer
Graphics, 28(Annual Conference Series):239–246, 1994.

[21] Matt Pharr and Greg Humphreys. Infinite area light source with importance sampling, 2004.

[22] Matt Pharr and Greg Humphreys.Physically Based Rendering. Morgan Kaufmann Publishers,
2004.

[23] Wikipedia the free encyclopedia:. List of indices of refraction. http://en.wikipedia.org/wiki/List-
of-indices-of-refraction, December 31st 2006.

[24] Wikipedia the free encyclopedia:. kd-trie. http://en.wikipedia.org/wiki/Kd-trie, January 4th,
2007.

[25] K. Torrance and E. Sparrow. Theory for off-specular re¿ection from roughened surfaces.Journal
of the Optical Society of America, 57(9):1105–1114, 1967.

[26] Bruce Walter. Notes on the ward brdf. Technical report PCG-05-06, Program of Computer
Graphics, Cornell University, April 2005.

[27] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. Multidimensional lightcuts.
ACM Trans. Graph., 25(3):1081–1088, 2006.

[28] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Don-
ald P. Greenberg. Lightcuts: a scalable approach to illumination. 24(3):1098–1107, July 2005.

[29] Turner Whitted. An improved illumination model for shaded display. InACM vol. 23, no. 6,
pages 43–349, 1980.

78

Erkl ärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebe-
nen Quellen angefertigt habe und dass die Arbeit in gleicher oderähnlicher Form noch keiner anderen
Prüfungsbeḧorde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde.
Alle Ausführungen, die ẅortlich oder sinngem̈aßübernommen wurden, sind als solche gekennzeich-
net.

Ich bin damit einverstanden, dass die Arbeit veröffentlicht wird und dass in wissenschaftlichen
Veröffentlichungen auf sie Bezug genommen wird.

Der Friedrich-Alexander-Universität Erlangen-N̈urnberg, vertreten durch den Lehrstuhl für Graphis-
che Datenverarbeitung, wird ein (nicht ausschließliches) Nutzungsrecht an dieser Arbeit sowie an den
im Zusammenhang mit ihr erstellten Programmen eingeräumt.

Erlangen, 08. Januar 2007
(Thomas Rudolf Kemmer)

