Globale Beleuchtungsberechnung mit Lightcuts

Diplomarbeit im Fach Informatik

vorgelegt von
Thomas Rudolf Kemmer

geb. am 29. Oktober 1980 in Miltenberg

angefertigt am

Institut f Gr Informatik
Lehrstuhl f ir Graphische Datenverarbeitung
Friedrich-Alexander-Universit at Erlangen-Nurnberg

Betreuer: Manfred Ernst

Betreuender Hochschullehrer: Prof. Dr. Marc Stamminger

Beginn der Arbeit: 22. Juni 2006

Abgabe der Arbeit: 08. Januar 2007






Contents

1

Introduction 1

1.1 ldeaoftheProject. . . . . . . . . . . . 1

1.2 Goals and History ofthe Project . . . . . .. .. .. ... .. .. ... ...... 1

1.3 PreviousWork . . . . . . . e 2
1.3.1 Lightcuts: A Scalable Approach to lllumination . . . . . ... ... ..... 2
1.3.2 Multidimensional Lightcuts . . . . ... ... ... ... .......... 3
1.3.3 NotesontheWardBRDF . .. .. ... ... ... .. ... ........ 3
1.3.4 Median Cut Sampling for HDR Light Probes . . . . .. ... ... ... .. 3
1.3.5 Recovering High Dynamic Range Radiance Maps from Photographs ... 3

Fundamentals 5

2.1 GeOmEetlry . . . . e e 5
2.1.1 Spheres and Spherical Coordinates . . . . . . ... ... ... ... ... 5
2.1.2 SolidAngles . . . . . . .. 6
2.1.3 Spherical Patches . . . . . . . . . .. ... 6

22 RayCasting . . . . . . . . . . . e 7

23 RayTracing . . . . . . . . e 7
2.3.1 TheRendering Equation . . . .. .. .. .. . .. ... . ... 8
2.3.2 LightAttenuation . . . . . . . . . . . . .. . 9
2.3.3 Bidirectional Surface Scattering Distribution Function (BSSDF) . . .. ... 10
2.3.4 Bidirectional Scattering Distribution Function (BSDF) . . . . ... ... .. 11
2.3.5 Bidirectional Reflectance Distribution Function (BRDF) . . . .. ... .. 11

2.4 ReflectionModels . . . . . . . . e 21
2.4.1 Lambertion Reflection (perfect diffuse reflection) . . . . ... .. ...... 12
2.4.2 Specular Reflection and Transmission . . . . . . ... ... ... ..... 2 1
243 FresnelEquations. . . . . . . ... 13
2.4.4 MicrofacetModels . . . . . . .. 14

Illumination by Lightcuts 17

3.1 The Rendering Equation Revisited . . . . . . . ... ... ... . ... ... ... 17

3.2 The Lightcuts Algorithm . . . . . . . . . . . . . 18

3.3 Lightcuts Bounding Cluster Error Estimation . . . . . ... ... ... ...... 19

3.4 LightTree . . . . . . 02



3.4.1 Representative Lights
3.4.2 Greedy Bottom-up Light Tree Generation
3.4.3 kdLight Tree
3.4.4 kd Point Light Trie Construction
3.5 Lightcuts in Action

Bounding thecos

4.1 Algorithm for the Infinite Area Light Source
4.2 Mathematical Solution
4.2.1 Bounding Cap Approximation
4.2.2 Creation of a Tight Bounding Cap
4.2.3 Algorithm for the oriented bounding box

Bounding the BRDF

5.1
5.2
5.3

Algorithms for the Infinite Area Light Source
Fundamentals of Infinite Area Light Sources
Data Storage for Infinite Area Lights
Median Cut Algorithm for Infinite Area Lights
Improving the Position of the Light Sources

6.1
6.2
6.3
6.4

The PBRT Rendering System
General Overview
Integrators . . . . . ... ... ... ...,
Direct Lighting Integrator
Lightcuts Integrator Plugin
7.4.1 Preprocess()
7.4.2 doLightcut()

7.4.3 Helpers of the Lightcuts Integrator

7.1
7.2
7.3
7.4

Results and Discussion

8.1 Benchmarks and Evaluation
8.1.1 Scenes with many Light Sources
8.1.2 Modifying the Error Threshold

Lambertian . . . .. ... ... ... ...
Oren-Nayar . . ... ............
Strategies for the Halfway Vector
5.3.1 Bound For The Point Light Cluster
5.3.2 Bound For The Directional Light Cap
5.3.3 Microfacet Modell

6.4.1 Centroid

6.4.2 Random Sampling of the Spherical Patch
6.4.3 Dynamic Infinite Area Light for Lightcuts
6.4.4 Comparison of Dynamic Light Trees after Rendering

CONTENTS



CONTENTS

8.1.3 Using Lightcuts for Optimal Area Light Sampling . . . . .. ... ... .. 67
8.1.4 Using Lightcuts for Infinite Area Lights . . . . . . .. ... ... ...... 67
8.1.5 The Sampling WeaknessofthelAL . . .. ... ... .. .......... 69
8.1.6 \Visualizingthe SizeofaCut . . .. .. .. .. ... ... ... ....... 70
8.2 Conclusion . . . . ... e 71
8.3 Future Work . . . . . . . e 27
A Source Code Snippets 73
A.1 Random Sampling of Spherical Patches . . . . . .. ... ... ... ...... 73
A2 kd-Trie Generation . . . . . . . . . e 74
A.3 Lightcut Algorithm . . . . . . . . . . . . . .. 75
Bibliography 77



Vi

CONTENTS



List of Figures

2.1
2.2
2.3
2.4
2.5

3.1

3.2
3.3

4.1

4.2

4.3

4.4
4.5
4.6
4.7

4.8

5.1

Spherical Patch. . . . . . . . . . 7
The figure shows the general idea of recursive ray tracing. . . . .. ... ... 8
Light attenuation for omni directional lightsources. . . . . ... ... ...... .. 10
Geometric effects caused by microfacets. . . . .. ... .. ... ... .... 15
Halfway Vector. . . . . . . . . e 16
The minimal distance between the surface posjiiand the light cluste€’ is used to

calculate the geometric term’s upperbound. . . . . . . ... ... ... 20
Possible problems occurring by light clustering. . . . . ... ... ... . .... 22
Overview of the construction algorithm oftd-trie: First, the split dimension is de-
termined, afterwards the split position. Regrouping of the elements to erikate
any element in the left branch has a smaller value with respect to the split dimens
compared to those in the right branch. A node is created and the algoritlsritseif
recursively for both branches. . . . . . . . . .. ... ... e 24

The pointP is the normal direction of the hit surface. The red patch is the set of

considered incident light directioms. . . . . . . ... .. ... ... ....... 27
alpha is the angle between the surface normahd the incident light directiow; at

a surface location. The coordinate systemisinworld space. ... .. ........ 28
The geodetic distance between a péirand a spherical patchBC' D is equal to the
includedangle. . . . . . . . . e 29
The green area marked with 1 can be treated in an efficientway. . ........ . . 30
Schematics for the bounding cap approximation. . . . . ... ... ... .... 31
The circumcircle of thé\ ABC. . . . . . . . . . .. .. 32
The surface normal is aligned with the z-axis. The bounding box C isterg but
subtendingthe z-axis. . . . . . . . . .. 4 3

Bounds for the point light cluster boxes. The xy-plane is mapped toottieohtal axis. 35

The incident light interval; and the viewing directiofl, are used to bound the Oren-
Nayar BRDF. The minimum and maximum values are chosen to retrieve the maximum
BRDFterm. . . . . . . e e 38

Vii



5.2

5.3

5.4

5.5

5.6

5.7

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2

8.1

8.2
8.3

8.4

8.5

8.6

8.7
8.8

LIST OF FIGURES

Two example plots of the Oren-Nayar bound with varying roughngssn the left

figure the viewer's direction in relation to the surface normal is very steegpared

the exampleontheright. . . . . . .. ... ... . ... ... . 39
Incident radiancey; arrives from light cluster3. In combination with the viewing
directionw, a bunch of halfway vectors;, is generatedd,, is the interval of angles
betweem andwy,, wheread); is the interval of angles between andw;, (compare

tofigure 5.3. . . . L 40
A rotated coordinate system is used to bodfdw, is used as z-axis, the surface
normalliesonthe xz-plane. . . . . . . . . . . . .. . . . .. .. .. . 14
Determining the maximum and minimum valuesfaandy leads to a bound for the

angle¢ by using the Pythagorean equation. . . . .. .. ... ... ... ...... 42

Three example plots of the Fresnel term with different materials. Theusag
demonstrates the amount of reflected parallel polarized light. The greea isuhe
equivalent for perpendicular polarized light. The blue curve is thenéleeflection
forunpolarized light. . . . . . . . . ... 45
The plots show the development of the first partial derivative witheiesjo 6; for

the Fresnel term with different materials. The red curve demonstratesnitiena of
reflected parallel polarized light. The green curve is the equivalergdigzendicular

polarized light. . . . . . . . . . . a7
Environment map with latitude-longitude mapping. . . . . . .. .. .. ... ... 0 5
Split results obtained with the original median cut algorithm for light prelpepting. 50
Intervals for a pixelofallmap. . . ... ... ... ... .. .. ... .. ... 51
Sunsetradiance map. . . . . . . .. e e e e 55
Scene with two spheres illuminated by the sunset radiance-map. . . . . ... 55
Samples created by three different strategies. . . . . .. ... ... ......... 56
Diagram for PBRT’s mainrenderingloop. . . . . . . . .. ... ... ... .... 57
The diagram shows the class relationship of the Integrator abstraction.. . . . . 58

Three images showing a scene rendered with direct lighting and lighttitsnaxi-

mum allowed error thresholdwas sett61. . . . . ... ... ... ... ..... 65
Modulation of the error threshold leads to increasing error and thused quality. . 66
The scene is rendered with an increasing number of light souraesesping an area
lightabovethemodels. . . . . . . . . . . . . 67
Two shperes rendered with different sampling techniques using ytigldaadiance

MAP. . . . o 68

Images rendered with importance sampling and lightcuts using the galilencadap. 69
Magnified image area to show the weakness of importance sampling withda fixe
sample count. The contrast of both images was slightly increased to visuaize th

differenceinthe printout. . . . . . . . ... 96
The image shows the IAL's sample weakness due to high error threshold. . . . 70
Pointlight scene cutsize . . . . . . . . . . . . . . . . 70



LIST OF FIGURES

8.9 \Visualized cut size: brighter means more shadow rays.

71



LIST OF FIGURES



List of Tables

2.1
2.2

8.1

8.2
8.3
8.4
8.5

Measured values for the indices of refraction. Values takenfr@n[2 . . . . . . .
Measured example values for the indices of refraction and the diosocpefficients
ofreal materials. . . . . . . . ...

Scenel, rendered in a resolution of 300x200. The object parameted for the
spheres: Oren-Nayar = 0.15, Microfacet(Blinn)e = 45.3kr = (0.7,0.7,07)ks =
(0.5,0.45,0.35). . . .
The settings are equal to those inin 8.1. The scene uses 10006 ligtdssour. . . .
Scene?2, rendered in a resolution of 200x200 and an error thdlest®01. . . . . .
Difference in rendering time for a high quality image. . . . ... ... ... ...
Render statistics for lightcuts vs importance sampling. . . . .. ... ... ...

Xi

66



LIST OF TABLES

Xii



Chapter 1

Introduction

1.1 Idea of the Project

Many photo-realistic rendering systems supporting global illumination wesged until today. Most
of them use prominent algorithms like ray tracing, path tracing, radiosity ampadis light trans-
port. The algorithms have in common the ability to simulate a complex illumination enviradnmen
Among all of them ray tracing is supposed to be the first choice for moa#ntdic and commercial
rendering architectures. It can process highly detailed scenes duddgatghmic complexity. Ad-
ditionally, ray tracers can handle optical phenomena like diffuse global illatioim and subsurface
scattering. During the last years, many theses and papers have lidishguiwith ideas to improve
ray tracing effects and its efficiency. There are several fields of ogitinizs regarding the ray tracing
algorithm. Many of them focus on efficient intersection testing which invosagshisticated space
subdivision methods. This thesis offers a different approach by asirdgorithm calledightcuts Its
main idea is to optimize rendering speed by reducing the number of necebsalyw rays. This is
achieved by creating a hierarchical bounding structure for light esurcthe scene.

1.2 Goals and History of the Project

The primary goal of my thesis is to implement tlghtcutsalgorithm into a modern ray tracing system
and analyse its performance. | chose the ray tracing framework acogingahe "Physically Based
Rendering” book from Matt Pharr and Grep Humphreys [22] due to itgiplstructure and detailed
documentation. At the beginning | examined how ray tracing works within ttstesy and solved
problems occurring when using version 4 of the g++ compiler. Then | gtéotereate the lightcuts
integrator code which is based on PBRT's direct lighting integrator. This imglécfollowing steps
for each supported light source type:

e hierarchical clustering of light sources into light trees

e error estimation for light tree nodes

| started to implement the algorithm for point light sources. Therefore appar class for light trees
was generated, which should be an abstraction to be used by any kindhtofylg. To cluster the



CHAPTER 1. INTRODUCTION

lights | used the greedy clustering algorithm mentioned in the first lightcuts pak It performed
poorly and | soon realized it is not possible to optimize the bottom-to-top light cingtapproach. As
a consequence | simply replaced it by a top-down clustering mechanismthsihd tree algorithm
which is explained in chapter 3. After this was accomplished, | started to thonkt &lbw infinite area
light could be used by the lightcuts algorithm. The paper proposed to replaagfinite area light by
a selection of distant lights. | thought it might be a better idea to dynamicallyrgtengdistant lights,
because this would perfectly fit the dynamic nature of the lightcuts algorithrestoenhd the light tree
as far as necessary. | realized this by sampling the radiance map with aithatgproposed by Paul
Debevec [8], which is described in 6. Any generated distant light semits a patch of directions on
the unit sphere. The directions are then used for error estimation in theuliglatigorithm.

In dependency of the light type the maximum error has to be approximatedity a light cluster
instead of real lights. Therefore, | had to find the error’'s upper dontmoduced by using an interval
of incident light directions instead of a real light. The error estimation will égcdbed in chapter 4
for thecos # term and in chapter 5 for the BRDF models.. It was very complicated to findiacbimr
the infinite area light source. Using a bounding cap offered a reakoapproximation with reduced
computational effort. In general, calculations with spheres are vergulifiand end up easily with
large terms. Finally, it was possible to find a method to efficiently create bogidips by reducing
the problem to a two dimensional case. The main challenge within my thesis wasstimation
for light tree nodes. | started with approximating the worst incident lightctiva and ended up with
bound for three BRDF models: Lambertian, Oren-Nayar and the Ta¥8parrow microfacet model.
Especially Torrance-Sparrow was extremely complex due to its usage balflhangle vector. In the
end | had a PBRT plugin which supports efficient rendering with a largeoeun of light sources.

1.3 Previous Work

The following sections give a brief outline on the most influencial papersnegpect to my thesis.

1.3.1 Lightcuts: A Scalable Approach to Illumination

The lightcuts paper from Bruce Walter, Sebastian Fernandez et alfif@8} introduced a method
for calculating very complex illumination situations with strongly sublinear costs wpect to the
participating light sources. At this level, their ray tracer could handle poihtdjcgarea lights, HDR
environment maps, sun/sky models and indirect illumination. The idea behinditia¢ lightcuts
framework is to generate light clusters which are large amounts of indiviidielsources incorpo-
rated by a bounding structure. This introduces an error to the final infdgeefore it is necessary
to find the error’s upper bound. Lighting is done by descending a letail light tree and estimate
efficiently an upper bound for the error present at this level. The lzlon is finished as soon as the
error falls below a previously defined threshold. The results demorgsiratiee paper are impressive:
the reference renderer has to evaluate each participating light séypasdiieh results in thousands
of shadow rays. On the contrary, the lightcuts method accomplishes tcerdgioumber of shadow
rays to a few hundreds per pixel. Despite the relatively small number diogheays, the example
renderings look very promising.



1.3. PREVIOUS WORK

1.3.2 Multidimensional Lightcuts

The succeeding paper to the previously mentioned lightcuts appearedyaahsSIGGRAPH [27].
Bruce Walter et al. from Cornell University further improved their remug engine and transported
the idea from illumination calculation to other domains. It was achieved to effigissnder rich vi-
sual effects such as motion blur, participating media, depth of field andlspatiialiasing. Therefore,
they used a method to discretize the integrals into sets of gather points andoiigisttp adaptively
approximate the sum of all possible gather-light pair interactions. The gixamples show a surpris-
ingly efficient rendering system which scales very well. This paper wafirgt to mention the usage
of a kd tree algorithm for building the light tree. In comparison to the previous lightgreedy tree
algorithm, this should have improved performance significantly. Unfortiypatés aspect was not
discussed in the paper.

1.3.3 Notes on the Ward BRDF

Bruce Walter’s paper [26] addresses some interesting aspects of tdeBR®F. It is explained how
the BRDF can be efficiently evaluated and what needs to be consideract@orect sampling. The
description of a bounding mechanism for the Ward BRDF over a regioiivehglirections was the
more important aspect regarding my thesis. Although | do no use this BRIE-also based on
the half-angle vector direction. This makes the bounding mechanism compatieused with the
Torrance-Sparrow model.

1.3.4 Median Cut Sampling for HDR Light Probes

Paul Debevec created a poster accompanying a paper at SIGGRABH&0The paper describes
an algorithm to split an HDR environment map into regions with similar light endtgyurpose is
to create a certain amount of directional lights representing the map. Théfagaorks by splitting
patches recursively along the bigger side of the actually treated patishal@brithm inspired me to
use it in my implementation for creating an efficient and dynamic sampling techriidps allows
handling large maps and saving preprocessing time for my implementation.

1.3.5 Recovering High Dynamic Range Radiance Maps from Phogpaphs

Debevec and Malik presented a method of recovering high dynamic radgeice maps from pho-
tographs at SIGGRAPH 1997 [5]. This can be done by using convetiimaging equipment, which
is the main benefit of the procedure. It works by taking multiple photograplasreal scene with
different amounts of exposure. Afterward, the images are merged higarithm to create a single
high dynamic range radiance map. This enables the authentic recordingnahaition settings in
combination with an adequate effort. Paul Debevec created numerousamdpsade them publicly
available in the internet [6]. Remarkably, most scientific work about higtadhic range (HDR) uses
the maps from his gallery. At SIGGRAPH 1998 a photo realistic renderistesy was presented
which allows rendering of synthetic objects into real scenes [7]. This teHDR radiance maps to
illuminate a synthetic object appropriately thus it is not recognized as artif@fatourse, this also

3



CHAPTER 1. INTRODUCTION

involves local lighting effects, but due to the use of a reflection modeldarhby objects the method
achieves very good results.



Chapter 2

Fundamentals

Photo realistic rendering implies a very complex simulation system based oicgdhysncipals. So

it is a necessity to know and understand some fundamental conceptsh@pteris dedicated to ex-
plain a selection of the most important general algorithms used in the implementtmom@anying
this thesis. The first section describes how to calculate with sphericalgsatcial solid angles. These
basics are required for calculations with respect to the infinite area lightipter 6. The subsequent
sections explain the general idearay castingandray tracing To understand the optimization pro-
posed by the lightcuts system, this knowledge is essential. This chapter id bipsedescription of
different reflection models used by modern ray tracers like reflectinracteon and subsurface scat-
tering. Additionally, some prominent models including the Torrance-Spamasofacet model are
explained in great detail.

2.1 Geometry

Calculations in a 3D environment can only be done by the help of a deceidrpof geometrical
knowledge. For the ray tracing algorithm described later in this chaptenged to know how to
subtend rays and any kind of objects present in the scene. This wouldikebsbe a set of polygons
and quadric surfaces. For some parts of the lightcuts implementation splofjeets were a major
challenge, so this is the first item to be examined.

2.1.1 Spheres and Spherical Coordinates

Often it is very handy to describe a point on the unit sphere by Cartes@dioates. On the contrary,

a better representation for many applications are spherical coordifiaese coordinates consist of
two angles and a distance from the origin. The distanisethe radius of the sphere centered at the
origin of the coordinate axi®! denotes the zenith angle between the positive z-axis and the vector
from the origin to the poinP on the spherep is defined as the azimuth angle from the positive x-axis
and the projected vectgron the xy-plane. With this definition the valid range tois [0; =] and for

¢ the valid range i$0; 27). It is sometimes necessary to switch between the two representations. The
formulas for the mapping fronfi(r, 6, ¢) — f(z,vy, ) are:

5



CHAPTER 2. FUNDAMENTALS

r = rsinfcos¢
y = rsinfsing
= rcosf

The formulas for the inverse mapping function frgitx, y, z) — f(r,0, ¢) are:

z
0 = S —
arccos( . )

¢ = arctan(%)

If the radius of the sphere is equal t®, then it can be referred as unit sphere ar@hn be left out
whenever it is a factor or denominator. Since infinite area lights are defipnedcoming radiance
from all directions, the unit sphere plays an important role.

2.1.2 Solid Angles

The solid angl€? is the geometric equivalent to an angle in a plane. It represents a seectiatis

and its unit issteradian (sr) The solid angle of a surface in space with respect to a location can be
obtained by projecting it on a sphere with radiuground this location. Consequently it is defined as
the size of the projected surface divided by the squared radius:

Q=
7'2
The differential anglelw can also be written as an integral depending on the differential size of the

considered surfacéA:

B dAcosf

dw 5

,
Thed denotes the angle between the surface normal and the vector from time hig ensures that
the orientation of the surface is treated correctly. The divisor is the edudistance of the surface
from the origin.

2.1.3 Spherical Patches

The infinite area light in combination with the median cut algorithm uses specitd ligtich describe
a whole set of directions on the unit sphere. For this case it is essentialdblé to calculate the
spherical angle for such a light source. These patches can bessagrby intervals of and ¢ in
spherical coordinates. Matching this prerequisite, it is possible to cal¢hkarea of such a patch as
seen in figure 2.1 and thus finding the solid angle it describes:

6



2.2. RAY CASTING

02 o2
A = / / sin 0dfd¢
01 1

= (—¢1 + ¢2)(cos by — cosbs)

de

sin 9 P

Figure 2.1: Spherical Patch.

2.2 Ray Casting

The ray casting algorithm was first presented by Arthur Appel in 1988t[®orks by shooting rays
from an eye point into the scene. The ray then tries to find the closest tlpe&ing its path. When
an object was hit by the ray, the lighting and shading at the intersection poiriecdetermined. The
surface color is determined by the properties of the lights in the scene, theahaft¢he surface and
the interaction of both.

2.3 Ray Tracing

The more advanced Ray Tracing algorithm was developed by Turner Whiti®79 [29]. The previ-
ous ray casting algorithm has the big deficiency of only shogingary rays This means only rays
from the eye point are cast. Whitted'’s idea was to recursively call theitdgoagain, if the ray hits a
shiny object like a mirror (see figure 2.2).

The ray is reflected by the surface normal at the intersection point tovesthie arriving light. AlImost
the same applies to transparent objects with the difference that light istegfr& hen the ray enters
matter and might be reflected and refracted again inside. The reflectiantieh process is repeated
until a predefined recursion depth is reached or a solely diffuse objédt Diffuse objects reflect

7



CHAPTER 2. FUNDAMENTALS

shadow

A
/ " reflected

A

Figure 2.2: The figure shows the general idea of recursive ray gracin

light in any direction, hence the reflection direction is not representingriigepties of a surface ad-
equately. At each intersection poisttadow raysre generated to check, if a surface is visible to the
lights in the scene. This test is very time-consuming, since all light sourcestti®de considered for
opaque objects lying between the surface and the position of the lightesdargeneral, theisibil-

ity denominates if objects are situated between two points in the scene. Whitted&lriseliased on
evaluating the perfect specular reflection and refraction directione $lirece are few real surfaces like
mirrors and glass which satisfy this criteria, the method was extended byaigimgtion represent-
ing the reflective properties of a surface. This function is calielirectional reflection distribution
function (BRDF). It describes how incident radiance emitted by a light sourae fiwectionw; is
reflected in directio,. This issue is addressed in great detail in subsection 2.3.5.

Many techniques have been developed for speeding up this processapgproach is the lightcuts
algorithm that reduces the number of shadow rays necessary to apptexhe lighting.

2.3.1 The Rendering Equation

The rendering equation introduced by Kajiya [13] is the basic principle afermoglobal illumination
algorithms. It is also known dgght transport equationLTE) which might be a better term for its
meaning. The equation describes how much light arrives at the viewesisqn L, from a visible
surface. This surface can refleét.j and emit {.) radiance described by the formula below:

Lo(p’ "‘_j) = Le(p,&) + L?"(pv('_‘j)

The vectow denotes the direction from surface positjpiowards the observer’s position. The amount
of reflected light is substituted by the integral of arriving radiance refttloy the BRDF. Additionally,
this term depends on the incident angle of the arriving light. The expawneisibn of the LTE is
formulated as follows:

Lo(p,) = Le(pab) + / Loy ) Li(p,d) (- ) dd,
G ————— —— N —

BSDF incident radiancattenuation



2.3. RAY TRACING

Since the principle of light transport is energy conservation, it may ndbigotten that incident
light L;(p, ;) has a recursive nature. Every illuminated surface emits light, which is ssditethe
scene and illuminates another surface and so on... Radiance is constana aly in vacuum. For
this reason it is possible to define the exitant radiangeiatdirectiond to be equal to the incident
radiance ap’ for a ray arriving from direction-&:

Lz(pa Jj) = Lo(plv 7(‘_}‘)

Of course, there must not be any surface intersecting the ray bepasedy’. To find the first inter-
section of a ray starting fromin directiond, the trace function is used. This changes the equation
to:

L;i(p,&) = Lo(t(p, &), —d)

If this result is inserted into the LTE, the final equation suffers from rEeardefinition, because
radiance leaving the surfaces appears on both sides:

L(p,5,) = Lo(p,) + /S £ (9, 33 L(E(p, &), ) (@ - )

It is plausible that the equation can only be solved analytically for very priengzenes with few
participating surfaces. Many algorithms have been developed to estimataluleeo¥ the integral on
the right side of the equation. A simple method is to be only interested in the radiangng directly
from light sources in the scene. In thhysically based ray tracgiPBRT) from Matt Pharr and Greg
Humphreys the algorithms calculating the estimates are cadtedrators The term is used in this
thesis as well for théightcutsintegrator.

2.3.2 Light Attenuation

Most ray tracing systems have the common assumption of light traveling in amwei€ut does not
intersect any geometry situated in the scene. Without a medium present, alldepfitieons hit a
surface or fly towards infinity. Due to energy conservation the photewarrdisappear as long as they
are not absorbed by a surface thus transformed into heat. It is thegiairterest to calculate the
amount of light arriving at a differential area located at a surface irstle@e using the setting from
figure 2.3.

A light source is shining at a surface with its surface normaihd the inclination anglé. The distance
to the light source is denoted by Since a definite quantity of photons are shot from a light source
the inward angle of the arriving light determines how many photons artitieeadifferential area.
As Lambert’s lawtells, the amount of energy is proportional to the cosine of the angle betiveen
surface normal and the incident light direction. The incoming radiation isiigally referred to as
irradiance £ and is measured by the uritm 2] (area density of flux). The initial energy of a light
source is defined aB, so the irradiance arriving at the differential area is:

E = ®cosb



CHAPTER 2. FUNDAMENTALS

ST

Figure 2.3: Light attenuation for omni directional light sources.

Point lights distribute light equally in all directions, hence the distané®m the light attenuates

the number of photons hitting the differential area. This can be imagined eblsdyenergy spreads
spherically around the originating light source. Simultaneously, the eo@arthe surface of the sphere
stays the same. Due to the surface area’s quadratic development, ttaceaalriving at the spherical
surface is proportional t§5:

P cosb
E=—+
4mr?
In more general terms, if a differential area is considered, the irragliamiving at a poinp from the
hemisphere over the surface normak defined by the following integral:

E(p,n) = /Q Li(p, ws) cos 6 |dw;

2.3.3 Bidirectional Surface Scattering Distribution Funcion (BSSDF)

The scattering behavior of light is the most important aspect to take into @vasi@h when simulat-
ing physically correct global illumination. As mentioned before it is a part ef.ffiE. If you imagine
some photons arriving at a random surface, it is a matter of course s fihotons are reflected,
transmitted or absorbed. The BSSDF is the most general model that simulatesttavior of light.
Its initial nomenclature has already been defined in 1977 [19]. The defifidgiche BSSDF over the
whole sphere of direction$? at positionp looks like this:

dLo(p,w,) :/ S(p', wi, p, wo) cos B;dw;d A
A JS2

Solving this equation is not trivial at all, because it also contains the diffiatdrradiance arriving
atp’ from directionw;. Therefore, the BSSRDF requires integration over surface aremeowhing
direction. Its complexity is due to the fact, that light which is entering matter atigog’ might travel
for some distance underneath until it leaves it again at positiSobsurface scattering is a problem

10



2.3. RAY TRACING

domain of its own and is heavily worked on. So far the publications of Jefi3rat SIGGRAPH
in 2001 and subsequent work showed that it is worth the additionakefi@nslucent materials like
skin, fluids and marble appear much more realistic than before. The sig#vdespctions describe
simplified versions of bidirectional reflection functions commonly used byremers.

2.3.4 Bidirectional Scattering Distribution Function (BSDF)

The union of both previously mentioned BRDF and BTDF is defined as BEB#ally it is a set of

four functions: two treating the light reflected at both sides of the sudadewo for its transmitted
amount. From the programmer’s point of view, it is an advantage, begausenly need to refer to
an abstract reflection interface, that knows itself how light is reflecte@pedence of the viewer's
direction.

2.3.5 Bidirectional Reflectance Distribution Function (BRDF

As mentioned before, thBidirectional Reflectance Distribution Functias a simplifiedBSSRDF
which assumes that reflected light arrived at the same position befdoe.pfoysically correct, BRDFs
have two fixed qualitiesreciprocity andenergy conservatiorthe first one ensures that incident and
exiting light directions may be switched and the result stays the same:

fT(p7w07wi) = fr(p7 wivwo)

Energy conservation is the basic principle of all physically based simulaggieras. In this specific
case, it means that the total reflected light energy is equal or less thagittenirlight energy arriving
from a hemispherél? around the surface normal

/ (n)ff(pa wmwi) COs 9¢dwl- <1
H2

The BRDF represents the probability that an incident photon will be reflénta certain direction

and does not pay attention to the photons entering the matter. This implicatestbatfdce normal

77 and the incident light directiomn; are situated on the same side of the surface, in other words the dot
product of the two vectors is always positive. Thus, the BRDF only dsfthe relation of incoming
irradiance and leaving radiance at a positioand not the interaction with the material itself, which

is referred to asubsurface scatterindt can be observed experimentally, that reflected radiance is
proportional to the incoming irradiance, i.e. if a light source emission is iserkahe irradiated
objects also appear brighter. This relationship can be expressed as:

dLo(pa wo) & dE(p7 wi)

This proportionality leads to the definition of the BRDF:

dLo(p,wo dLo(p,wo
fr(pvwmwi) = (p ) = (p ) )
dE(p, wi) Ll (p, wi) COS GZde

11



CHAPTER 2. FUNDAMENTALS

By integrating this relationship over the surface area it is possible to cal¢hatetal light leaving
the surface:

dLo(p,wo) Z/ Jr(Ps wWo, wi) Li(p, w;) cos 6;dw;
SQ

Assuming the light arriving from all directions is the same, the equation cdortieer simplified.
Usually, this term is denoted ky,4 and represents theemispherical directional reflectance

Phd = / fr(p, wo,w;) cos B; dw;
H?2(n)

2.4 Reflection Models

Many models have been developed trying to simulate certain effects. The comautels are derived
from measured data, certain phenomenons, optics or simulations. | willnstiaihe simple models
and basics to reflection first and later on describe the more sophisticaed on

2.4.1 Lambertion Reflection (perfect diffuse reflection)

Lambert’'s Cosine Law postulates that an ideal diffuse surface, alserkas a “Lambertian” surface,
scatters light equally in all directions. By looking at such a surface, theeped brightness does not
change with an altering viewing direction. The reflected number of photmerdils on the differential
viewing angle and the differential size of the surface area. The followkample helps to better
understand this issue: An observer looking from the surface nornettitin sees a differential area
dA with a determined differential solid angi€). Now the observer moves around the differential area
keeping the same distance. The intention of the viewer to only keep his diffdreolid angle enables
him to see a bigger area of the surface. Luckily, the surveyed size patoh is proportional tgols—@.
As defined by Lambert, the amount of reflected light in the viewing directiomapgational to the
cosine of the angle the viewer is looking at it. This is the key to cancel theesthe numerator and
denominator of the equation, leading to an equally perceived number tdnshmdependent of the
viewing direction. That means for the BRDF a constant value independ&mt viewer’s direction.

frlwiswo) = £

2.4.2 Specular Reflection and Transmission

Mirrors reflecting light are the ideal example for specular reflection.aRégg computer graphics
this type of reflection plays an important role for the microfacet models ithestcin the following
section. In geometrical terms, perfect specular reflection implies inciddritdgng scattered in a
single outgoing direction:



2.4. REFLECTION MODELS

If light arrives at a translucent surface, a certain amount will beact#d. This behavior of di-
rection change is explained I8nell’'s law At the boundary between the two participating media, the
wave direction is altered. The so-calledraction directionangled; from the mirrored surface normal
—1i can be derived usingnell’'s law

n; sin 91 =Mt sin Gt

The change in direction depends on the participating media, which are dagehby their index of
refraction. This parameter tells how much slower light travels inside a specific medium compared
to the speed of light measured in vacuum. Unfortunately, the index ottefmedepends on the wave-
length of the incident light, as it can be observed whenever white light iedied by a prism. To save
computational time and effort this effect is usually ignored in a ray tracistesy.

2.4.3 Fresnel Equations

The previous subsection was denoted to the reflection and transmissictiodiref light for specu-
lar surfaces. Another interesting part of reflection theory is the behaf/gemi-transparent surfaces.
Augustin-Jean Fresnel developed a model based on the refractivesrad the media the light is trav-
eling through. It is known as thieresnel equationand denotes the reflection coefficient. In general,
the result also depends on the polarization of light and additionally on trductive behavior of the
surface.Conductorg(metals) andlielectric medialnon-conductors) have their own set of equations
due to the fact, that metals are not translucent, but absorb a certain ashtight energy. This effect

is controlled by thebsorption coefficient. The formula for dielectrics is:

7 cos B; — n; cos Oy

o= 1t cos 0; + n; cos Oy

7); cos 0; — g cos Oy

7; cos 0; + g cos Oy

Table 2.1 offers many examples for indices of refraction. Refractionvelagth-dependent, so these
values can only be used as an approximation of the behavior of visible light.

Material natA = 589.3nm | Material A = 589.3nm
Vacuum 1.0 Air at sea level| 1.0002926
Water 0°C) | 1.333 Ice 1.31

Rock salt 1.516 NaCl 1.544
Bromin 1.661 Diamond 2.419
Cinnabar 3.02 Silicon 4.01

Table 2.1: Measured values for the indices of refraction. Values taken[23].

For conductors this formula is commonly used:

13



CHAPTER 2. FUNDAMENTALS

n? + k?) cos ;> — 2ncosb; + 1
77 2 4 k2) cos 0;® 4 2ncosb; + 1
)
)

— 21 cos b; + cos ;2
+ 21 cos 0; + cos 0,2

r1

Some examples for the absorption coefficient and the index of refractiarohductors are given in
table 2.2.

Material n k
Copper | 0.617| 2.630
Gold | 0.370| 2.820
Silver | 0.177| 3.638
Steel | 2.485| 3.433

Table 2.2: Measured example values for the indices of refraction andfwemion coefficients of
real materials.

Most ray tracers do not calculate with polarized light. So it is assumed thabthgzation of light is
randomly distributed. This leads to the formula for the “unpolarized” Filggflection coefficient:

1
F, = 5(7'” —|—’I“L)

2.4.4 Microfacet Models

Real life surfaces are not plane at all. With the proper magnification@gfean be imagined as
regions with many pits and falls. The differences in height and angle deteth@rperceptual rough-
ness an observer recognizes when looking at it. A model using this gecmgtics based approach

is called amicrofacet modelln general, the microfacets are treated as tiny mirrors with respect to
the differential area being illuminated. As a consequence, the total amblightoscattered towards
the viewer’s direction is determined by the number of mirrors providing thd rééaction direction.
Some local lighting effects may occur which reduce or increase the ayiiight. These anomalies
can be sorted into three groups, demonstrated in figure 2.4:

Masking A microfacet is not visible to the viewer due to another one occluding it.

Shadowing The inversion to masking: Reflected light does not reach the viewer beeamuicrofacet
occludes its path.

Inter-reflection Light reaching the viewer after bouncing between multiple facets.

There exist several ways to reduce these effects by simplifications to thel.mdatiost common one

is to assume that all microfacets areshapedwith pits of equal height. This way, it is sufficient to
consider the direct microfacet neighbor only. The models always tryd@upod trade-off between
simulating the anomalies and calculation efficiency.

14



2.4. REFLECTION MODELS

(a) Masking (b) Shadowing (c) Interreflection

Figure 2.4: Geometric effects caused by microfacets.

2.4.4.1 Oren-Nayar Diffuse Reflection

In 1992 Michael Oren and Shree K. Nayar from Columbia University] [g@posed amicrofacet
model that eliminates some shortcomings of the primitive Lambertian model for elifafiection.
For this reason, they observed the reflection behavior of real life tshjébeir microfacet model is
based on a surface consisting of symmetric V-shaped grooves - all fixeifegt Lambertian reflectors
of their own. This is a main difference to other microfacet models simulatingugrereflection.
The parametes is given to modify the roughness of the surface following a Gaussian distib

It simply changes the standard deviation of the orientation angle. To gime sgamples, a of 0°
simulates a perfect Lambertian surface while af 40° simulates a surface appearing much flatter
due to the reduced dependency of the surface orientation angle. &hediration for the model is:

fr(wi,wo) = g(A + B max(0, cos ¢; — ¢,) sina tan )

2

o
A =1--—7
2(02 4 0.33)
B 0.450
o2 1 0.09)
a = max(b;,0,)

B = min(6;,6,)

2.4.4.2 Torrance-Sparrow Microfacet Model

The micorfacet model introduced by Torrance and Sparrow has gltesah developed in 1967 (see
[25]). They use the assumption of surfaces consisting of perfecugrereflecting microfacets. Mi-
crofacets having a surface normal equal to the half way vector rétiattowards the viewer. There-
fore the surface normals need to fulfill the following equation:

15



CHAPTER 2. FUNDAMENTALS

IS

;

%V

Figure 2.5: Halfway Vector.

Wit W

" |wi + wol

Thew;, denotes the halfway vector, i.e. the vectohalf way betweetthe incident lightv; and the
viewerw, as it is shown in figure 2.5. The orientation of the microfacet surface risrisidescribed
by a distribution functionD(wy,) controlling the portion of halfway vectors that perfectly match the
previously defined equation. In 1977 Blinn [4] proposed a microfasttilution function with an
exponential falloff starting from the direction of the surface normal. Tioperly normalized Blinn
microfacet distribution with its exponentis formulated as:

Wh

e+ 2
2m
To further elaborate the model it is assumed that the reflecting microfaestsidaces in accordance
to Fresnel’s law of reflection. This means that the Fresnel #€rfw,) in dependence of the viewer’s
direction must be added. In order to account for shadowed and maskedfacets an additional
term is added, called thgeometric attenuatioterm G(w,, w;). The attenuation term consists of two

elements. The first tries to simulate the masking effect from 2.4:

Dplinn(wh) = (wp - )¢

2(n - wp)(n - wp)

Gmask (wm wi) - Wy - W,
o

The shadowing effect can be simulated this way:

2(n - wp)(n - w;)

G shadow (wmwi) - o
o Wi

Usually a combined version of the terms is used:

2(n-wp)(n-wy) 2(n-wp)(n-w;)

G(wo,wi) = min(1, min( )

W * Wh ’ Wo - W;
Putting it all together, the final equation for the Torrance-Sparrow BRDF

D(wp,)G(we, w;) Fr(wy)
4 cos B, cos b;

f?"(pa Wo, wi) =

16



Chapter 3

lllumination by Lightcuts

The lightcuts framework first presented by Bruce Walter et al. on SIGERA005 is a method for
efficiently computing realistic illumination. The initial idea was to approximate the dillemina-
tion provided by many point lights by clustering them into groups. Thesepgrate organized as a
light tree with the root node representing the accumulated illumination in the wbetesWith an
algorithm to compute the bound of the approximation error for each clusitepassible to determine
alight cut through the tree without falling below a predefined error threshold. Tha@enchapter is
denoted to explain the lightcuts system in theory, starting from the basics ofrligisport.

3.1 The Rendering Equation Revisited

The previous chapter introduced the rendering equation and the pespmrsurface reflection theory
in great detail. For most scenes itis practically impossible to solve the lighptratresjuation in its full
generality. Therefore, an algorithm is needed to calculate an approxinfatitire lights integral that

gives the reflected radiance. The algorithm of choiabrisct lightingwhich is a simple approximation
for the LTE:

Lolp53) = L) + [ Fr (550 Lalp, ) costs i
s
The direct lighting integrator represents this part of the previous equation

/ J2 (9o, ) La(p, ) cos 0 dod
S

Gladly, reflections from the light sources are independent of each dtha consequence it is possible
to break it down into a sum over all lights:

Z/Sfr(p,@,@)Ld(Z)(P,@')Cos@i du;
I

The ability to evaluate the contribution of each light independently is the kayiresgent for the
lightcuts algorithm.

17



CHAPTER 3. ILLUMINATION BY LIGHTCUTS

3.2 The Lightcuts Algorithm

Bruce Walter and his associates reformulated the previously mentionetlldjihging integral. They
introduce four terms for the final lighting computation:

M (material term) The BRDF of the surface multiplied ks 6;
G (geometric term) Attenuation of light due to geometrical distance.
V (visibility term) Visibility of the light source from the regarded point on the surface.

| (intensity) Emitted power from the light.

The pointz is illuminated by a set of lightk, gathering the contribution of each individual light:

Ly = MGy iVail;
i€
Since accurate approximation of global illumination requires a large set dgJighis very time-
consuming to evaluate the illumination by using all lights. Lightcuts provides aldeaalution for
this problem by arranging lights into clusters. The radiance reflected intoi¢hgers direction is
expressed as estimate from all cluster light souftes

Lo~ My oGVl
ceC

To bring efficiency to the next level, the clustering of light sources isrimgal, referred to akier-
archical light tree This step is done by preprocessing all the lights available in the scend) ishic
explained below in this chapter. When the ray tracing algorithm shoots rayshie scene and hits
a surface, it is essential to have a method to find a light partition contributingréatest amount of
radiance for the considered surface location. Therefore an estiaragion routine it used to compute
an upper bound on the error introduced by using a light cluster compated individual lights. The
direct lighting integralL. for a cluster of lights is the sum of all radiance added by the lights in the
cluster:

Lc = Z M:p,iGm,iVx,ilz’
1eC

A good approximation for this term can be found by creating a representaght for the cluster.

L'I‘ ~ Mx,er,er,r Z Iz
ieC
It is situated inside of the cluster and introduces a certain amount of Btk@r The crucial part
of the algorithm is fast and precise error estimation. If the calculated gefuls a value above the
predefined perceptual visibility threshold, a refinement of the cluster beustitiated. This is done
by ascending the hierarchical light tree and performing the error estimegiin for the child nodes.

18



3.3. LIGHTCUTS BOUNDING CLUSTER ERROR ESTIMATION

These refinement steps are repeated until the error estimate dropthtitbeelareshold. For leaf nodes

in the tree the error is alwaysand does not need to be evaluated. The selected nodes represent a cu
through the light tree, thus it is calldijhtcuts The source code describing this algorithm can be
obtained from Appendix A.3. In the subsequent sections | will explain tbegss of error estimation

for light clusters and the structure of the light tree.

3.3 Lightcuts Bounding Cluster Error Estimation

An upper bound for the error introduced by using a cluster insteadobf iegividual light has to be
approximated. The error is defined by the teB#. and is the difference between the direct lighting
integral L. and the direct lighting approximatiah. using a representative light:

BE. = |Lc — L,|

Since direct lighting works by multiplyind/, G, V and[ it is necessary to find the error’s upper
bound introduced by any of these terms. The intensity téri: also part of the error estimation,
because the magnitude of incident radiance determines how much erldpossibly be done. The

error bounds have to be generated for a surface positaomd a light clustetC.

The visibility termV defines the visibility of a light source. It is if a light is visible from the surface
position. Otherwise it i$. In case of semi transparent surfaces, a fraction value is alsoicablee
The term’s upper bound needs to be exact, which is not easy to achieuwditoary scenes. Therefore
all lights are declared potentially visible. This means using the trivial uppandof1.0:

VE=1.0

The geometric error ter@ describes the attenuation each light in the cluster suffers from. For point
lights the term depends on the distantbetween the surface positianand each light's position
Ipos; in the clusterC:

1 1
G = - =
P d; |lpos; — x|?

An upper bound for the attenuation term can be found by taking the minimusibp@slistance:

1
min(d;)
For large clusters of point lights this is hard to evaluate, so the minimal distaapprieximated using
a bounding box, which inherits all the light sources. Figure 3.3 showssaltidce and the vector with
minimal distance from the surface position to the light cluster box.
The minimal distance from the surface position to the axis aligned boundingA%RE) is then
determined by calculating the minimal distance for each geometric dimension. Thig riteax-
value of the surface positignis compared to the x-interva{ [,,,;; Zmaz| Of the bounding box. If
the coordinate is outside the interval, the point with the shortest distancepfieiet the limit of the
interval closest to the coordinates;pfOtherwise the coordinate is between the limits of the interval.

max(Gy) =

19



CHAPTER 3. ILLUMINATION BY LIGHTCUTS

shortest distance

Figure 3.1: The minimal distance between the surface positiand the light clustet” is used to
calculate the geometric term’s upper bound.

In this case, simply the value fromis taken over. The hit poinl on the bounding box surface
consequently has the coordinates:

A = {Closest(x), Closest(y), Closest(z)}

The geometric bound for the infinite area lightli®, because there is no attenuation with increasing
distance.

The material termV/ inherits both the cosine falloff due to the incident light direction as well as the
reflection properties of a material defined by the BRDF of the hit surfaséipn p. Determining an
upper bound for the cosine term means to calculate the minimum angle betwemnftee normal
atp and the bounding structure for the clustered light sources. For point tigktsneans calculating
a bound for a bounding box. The special infinite area light uses a lrmyedp. The idea behind it
and notes on the implementation of the bounding process will be describedsulibequent chapter.
Creating upper bounds on the BRDF is an even more challenging task. Mynmaplation supports
bounds on some models already existing in the PBRT rendering system. Stdttirige Lambertian
diffuse reflection, which is trivial to bound, | developed a bounding raa@m for the microfacet
Oren-Nayar diffuse reflection model and for the Torrence-Spamawofacet model. The Torrence-
Sparrow microfacet model contains the viewer dependent halfwayrvddte paper [26] offered a
reasonable solution for bounding the halfway vector. This will be expihimehapter 5.

3.4 Light Tree

Light trees are hierarchical data storages for lightcuts compatible lightesmun my implementation
there are two different types of light trees. One tree is generated forfiaite area light and an
additional one for the point lights in the scene. These two types of light raes many things in
common, so | will describe the general functionality first. The light tree istssf interior nodes and
leaves. Each leaf is an individual light source, not different to thesel by general direct lighting
calculations. Interior nodes in the tree are light clusters representingedlgtits below. The nodes
contain aepresentative lighthat embodies the total emitted radiance of its child nodes and a bounding
structure to help approximating the geometric and material term iertoe estimationroutine. An
example tree with 8 lights can be examined in figure 3.4.

20



3.4. LIGHT TREE

Clusters __| ® ®
/ /N

® ®  ®
| #\ ds d%

(a) A light tree with 8 individual lights. The interior nodes de-
noted byR represent the lights below. The emitted radiance of
a node is the accumulation of its child nodes.

3.4.1 Representative Lights

A representative light emits the accumulated radiance of its children. Theetataion of a cluster
is defined as the sum of all individual lights the cluster represents:

Ip=>_1I
ieC
The point light tree uses an AABB to represent the spatial extent of tleepocated light sources.
Axis aligned bounding boxes are defined by their limit in each dimension. §beef3.4.1 shows an
axis aligned bounding box for a 2 dimensional setting:

BBox(xminv Tmazs Ymins Ymax s Fmin, Zmaz)

Infinite area lights (IAL) do not need to store bounding boxes. The irtgnde of an IAL is to define
radiance arriving from all possible directions. The implementation of theit@farea light tree uses
a variable number of directional light sources to replace common infiniteligigasource sample
algorithms. Therefore, representative directional lights store the @@&miving from a limited area
on the unit sphere. The area is expressed by two intervals, one foenlita gdistance and one for
the azimuth angle:

BDiT(@min, gma:m ¢min7 ¢maac)

The next sections describe two methods of creating a light tree for point.lighaisly there are two
possibilities for clustering: The bottom-up approach, which was descirikted initial lightcuts paper
and a top-down attempt mentioned in thaltidimensional lightcutpaper from 2006 [27]. | will show
that the latter leads to a much better light tree, than the first one wiiniifarity metric

3.4.2 Greedy Bottom-up Light Tree Generation

The first lightcuts paper [28] proposed to build the light tree in bottom to topneraby clustering
lights following a similarity metric. This metric was defined by the emitted radidncéhe diagonal
length of the cluster bounding baxc, the half-angle of the bounding come and a constant to
control the relation between spatial and directional similarity:

21



CHAPTER 3. ILLUMINATION BY LIGHTCUTS

e

Xmin Xmax

(b) Lightsinherited by an axis aligned 2[@) Represents incident light directions in
Bounding Box. the intervals fol® and¢.

I(c(a% + (:2(1 — cos BC)Q)

The algorithm was not described any further. It was only mentioned t@beealy clustering approach
trying to combine lights with minimal value due to a similarity metric. This method of clustésing
very slow, because you need to compare each light with all remaining lightsdaer ¢ find the
minimal similarity metric value. For the first level of clusters alregﬁ)comparisons have to be done
and stored for efficiency. For any level of the tree, the number of eleniehbisected, so in the end by
obeying the result of the arithmetic serieslof % + % + % + ... the number of comparisons reaches
n?. Nevertheless, | implemented the algorithm to see how it actually performse$tk was a slow
evaluation and unnecessary big clusters. Whenever two elements apedmue to their similarity,
other pairs might become less optimal. Figure 3.2 demonstrates the problem.

S
(d) 4 point lights in the scene(e) When the two lights nearest(f) The optimal clustering.

to each other get grouped first,
the created clusters are too big.

IS

Figure 3.2: Possible problems occurring by light clustering.

Assuming that all point light sources have an equal emission of light, the simitaetric tells, that
the two lights in the middle are grouped first. After taking out the two lights the tws tefeget
clustered to an unnecessary big cluster. Building a minimum spanning trég maasibly help to
solve this problem, but there is a more reasonable approach for thetenaf clusters.

22



3.4. LIGHT TREE

3.4.3 kd Light Tree

Thekd-tree is a very well suited top-down data structure to partition a big numbight&ources into
clusters. Remembering the lightcuts system’s operating mode, it should be th&aslaio generate
clusters, whose error estimates soon fall below the perceptual thre€lasididering point lights the
main factors of influence are the distance to a light source, the minimum artgledrethe surface
normal and the cluster and its intensity. The squared distance is part @faheetyic term of the light-
cuts error estimate. For this reason a binary space subdivision algorithractee space partitioning
could be used. The octree algorithm splits the space into eight equally mgseg each step of exe-
cution. This is achieved by splitting with three axis perpendicular planegtsgj¢he position of the
plan as the middle of the currently considered box. In contrast to thig;dHeee nodes only contain
one axis perpendicular splitting plane, not necessarily situated at the nwédi@boxes geometric
extent. As a consequence, duribdrtree generation a heuristic can be used to determine which split
position offers the best trade-off depending on the future usage. lingpld it as a special balanced
kd-tree where each leaf node is at the same level of the tree and only the $taxe real light sources.
Wikipedia tells [24], that these special trees are also caltetties. The difference betweenkd-trie

and akd-tree is that interior nodes &fl-trie do not store data. This has consequences for tree building
and data storage. The next chapter will cover this issue thoroughly.

3.4.4 kd Point Light Trie Construction

In the beginning it is necessary to defihgwhich is the number of dimensions the initial data has.
For the purpose of generating a point light tree, there are three dimen3ioese are the x, y and z
coordinate of the point lights positions.

The algorithm building the tree works this way:

e determine split dimension.

e determine split position.

e elements left of the split position must be smaller than those on the right.
e recursive call of the algorithm for the split elements.

There are several strategies possible to determine, which axis shoyblitdegst. The simplest
one is to split in a certain predefined order. Dealing with geometric positionstter strategy is to
split the axis with the maximum extent first. This reduces the volume of the baydixi by the
maximum immediately known value.

Finding the split position is a similar problem. The use of $patial medianas primitive splitting
strategy leads to a cubically subdivisioned space, which generatesdaddree for many scenes.
An even simpler method is the usage of tigect mediarsplitting strategy. It generate a splitting
plane with each side containing the same or similar number of objects. This islittiagspule of
choice, since it is easy to implement and generates a balanced tree. Splittitgjite for kd-trees
could be a chapter on its own. Depending on the usage, there exist masyhide splitting could
be controlled. Since these models were mainly developed for ray tracirygopleeate with triangles
and cannot be used directly to create light trees. There is still some raofurfloer optimization.

23



CHAPTER 3. ILLUMINATION BY LIGHTCUTS

A splitting heuristic that detects particular small regions with many lights would lee 8mce the
algorithm works impressively well, this part has not been a priority sdHar.an optimal light tree,
the concept would be to try finding a split plane, whose children have a siesilemated error. This
could be achieved by trying to generate clusters with similar intensity and sizecéne files with a
large number of equally distributed point light sources the stankidutrie satisfies this proposal.

Figure 3.3 shows how light tree generation works.

lights light coordinates
|
[ Mm% y z |
Dimension with maximum extent: x [0;5] . 0 4 5
i bi gi split axis

x - split at object median L . 3 2 1
o[ 1] 2] s] @ | s 1 2
" ® 4 4 4

Ely on the left < Ely on the right split position

ENER|EREN ]
recursively treat children @ @
| | ' ,
ENEN e e

El, left < Ely, right Ely left < Ely right @ @
L o] % % i%%

Figure 3.3: Overview of the construction algorithm okd-trie: First, the split dimension is deter-
mined, afterwards the split position. Regrouping of the elements to ensatranhelement in the left
branch has a smaller value with respect to the split dimension compared tarthibseight branch.
A node is created and the algorithm calls itself recursively for both besich

The algorithm used for light tree generation starts to determine the split ehésdimension with
the maximum extent is selected. Therefore, all elements must be compatéeifaninimum and
maximum coordinates for each dimension. For the error estimation of a lightrglagteunding box
will be needed. It is also possible to generate a bounding box for all ligitaimed in this cluster.
As a side effect, the box can be queried for its dimension with maximum extaatnéivertheless
necessary to iterate over all elements in one step. Each split creates abdevofrithe tree. The
nodes contain the split information, which is thglit axis split position the data necessary for the
lightcuts error estimation, the bounding box and the representative lighspliig@osition is chosen
by selecting the median of elements enclosed by the node. Afterwards, iteéssagy to make sure
that all elements in the left branch are smaller than the elements in the righhlwéthcrespect to
the split dimension. This action is cheaper than sorting them in ascending ®h&ealgorithm can
now call itself recursively for the just created child branches. Therssen stops, when there is only
one element left. This is a leaf of the tree and contains only the real lightesolsoc real lights,

24



3.5. LIGHTCUTS IN ACTION

no bounding construct or representative light is necessary. Theesoade forkd-trie generation is
presented in appendix 2.

3.5 Lightcuts in Action

Finally, the selection of nodes leads to a cut across the light tree. To deatertke error for some
cases | created some renderings for a scene with a very reduced ligétiimgy. Four point lights are
present, two on each side of the spheres. The following pictures shoeh#mges and introduced
error zones by clustering the lights.

e

(a) The scene rendered with all lights. (b) The light tree used for rendering.

25



CHAPTER 3. ILLUMINATION BY LIGHTCUTS

(c) The scene rendered with one representative (d) Light tree (e) Error zones
light and two real lights

o

() The scene rendered with two real lights and (g) Light tree (h) Error zones
one representative light.

= =

(i) The scene rendered with two representative (j) Light tree (k) Error zones
lights.

26



Chapter 4

Bounding the cos ¢

This chapter explains how the cosinetipfcan be bound for incident light directions. In the lighting
equation, thecos 6 is an important part. It describes the scattering of photons due to incidgiet an
This phenomenon has already been clarified in 2.3.2. The bound for shreeaf6 is a very grateful
term, because it can be computed efficiently and reduces the maximum pessiblef the lightcuts
error estimation term significantly for laterally situated light clusters.

4.1 Algorithm for the Infinite Area Light Source

Figure 4.1: The poinP is the normal direction of the hit surface. The red patch is the set of cnesid
incident light directionsu;.

The goal is to calculate a cheap and tight bound on the minimum angle betweeectbe of the
surface normap and the incident light directiow;. Not to be confused with the term used for the
spherical angl®, the minimum angle is denoted asin this section. The following equations will
solve the problem mathematically. For spherical coordinate8 thén the rangég0; 7). In this inter-
val the cosine function is invertible, because it is continuous and strictly tapizodecreasing. The
direct relationship between the angle and its cosine allows using both siqguresynonymously. This
means, bounding the minimal angle is equivalent to bound the maximum cosine.

Omin ~ max(cos(6;))

27



CHAPTER 4. BOUNDING THECOS#

The same applies to any angle between two vectors likextttee angle between the patch and
Since both are situated on the unit sphere and thus already have a lehg@thtloé cosine of the angle
is the dot product:

p-wi
To calculate the bound, it is necessary to find the nearest position insigattfewith respect tp.
4.2 Mathematical Solution

The mathematical solution for the problem is based on the dot product betiaepointp and the set
of incident light directions:

COSQU =D+ Wi = Pz * g + Py * by + Py * i,

z

[

@

Figure 4.2:alpha is the angle between the surface normand the incident light directiow; at a
surface location. The coordinate system is in world space.

It is possible to omit the trivial case, because this can be computed previlfuks/ vectorp directs
inside the set of incident light directiong, the result forcos @ equals1.0. Otherwise the nearest
vector is situated somewhere at the outer edge of the cluster. The codime afigle between an
arbitrary pointP on the sphere and the outer edges of the patch can be described bitaheép
four equations. Each equation solves the problem for one of the e@igescorrect solution is the
maximum result, i.e. the minimuhobtained by any of these for the given intervals.

Di(0) = py*sing x cos Gmin + py * sin @ * sin ¢y + p, * cos
Dy(0) = py*sinb * cos Gmaz + Dy * Sin 6 * sin Gpaq + 2 * cos
Ds(9) Pz * SIN O, * €OS @ + Py * SIN Oy, * SID D + P, * COS Oy,
Dy(¢) = py*5inbieq * cOS G + Dy * SiNOpaq * SIN G + P * cOS Oy

To determine whether there is a local maximum in the considered range ablpassind ¢ it is
necessary to calculate the first derivative:

Di(0) = py*COS Gin * cOS O + py * SIN Gy * cOS O — p, * sin b 4.1
Di(¢) = —pg *Sinbpy, *sind + py * sin Oy, * cos ¢ 4.2)

28



4.2. MATHEMATICAL SOLUTION

A BminPmin) D3(0) C Bmin-9max)

D;(6)

D
B (emax'¢min) 4(¢) D (emax'¢max)

Figure 4.3: The geodetic distance between a psirgnd a spherical patcABC D is equal to the
included angle.

D, and D4 can be solved analogously. The extrema are determined by setting the pg@aji@l to
0 and solve them fof assuming that = p,, * cos @i, andb = p,, * sin @y, ande = p.:

Dy = 0
0 = axcosO@+bx*xcosh —cx*sinf

= (a+0b)cosf —cxsinf
——

=d
cxsinf = d=xcosf
% (1 —cos’) = d*xcos’d
2 ¢
cst = arp
c
cos) = +—v-—oo—
Ve 4+ d?
c
=0 = Zarccos| t——
< vc2+d2>

It is now possible to test if an extremum exists insidehiterval of the patch. If there is none, the
function is monotone and one of the boundary points is the shortest disTdrecsame applies for the
Dj and D)) equations, assuming that= p, * sin 6,,,;, and f = py * sin O pyip.

Dy(¢) = 0
0 = fcos¢p—esing

= ¢ = Zarctan (i\/f;ﬁ>

29



CHAPTER 4. BOUNDING THECOS#

These results lead to the conclusion, that it is possible but not fast tdatelthe nearest distance
from an arbitrary point to the patch. Computing the extrema must be perfofoneghy edge to
determine, if the shortest distance is in between the boundary points. Lubkilg are some special
cases for whom it is possible to evaluate a quick and easy solution. If tieges[s represented by a
latitude/longitude mapping as it is usually done for environment mapping, aisedtibe sphere can
be marked where evaluation is easy.

Omin Omax

Omin

emax

e0 21:¢

(a) The sphere as 2D lI-texture. (b) The colored areas attached to
the sphere.

Figure 4.4: The green area marked with 1 can be treated in an efficient way

If the point P is inside the area marked with 1, the paiptvith the nearest distance has the same
¢ value ag(). This can be observed in figure 4.4). It is possible to proof that thetiequaescribing

the distance between the poiRtand the edge next to it has an extremundatf the equation from

4.2 is used angg = ¢p, this leads to:

Di(¢) = 0
= —sinfcos ¢p sin b, sin gg + sin 0 sin ¢ p sin 0,5, cos ¢

= 0

For the 1-marked area the cosinecwis the maximum dot product of the vectprand the twog
vectors, one for the upper and one for the lower patch boundary:

maz(cos o) = max(q - p,q2 - p)

It is possible to simplify the dot products to:

maz(cos a) = max(cos(0p — Omin), cos(0p — Omaz))

It depends on the implementation and the cached data which one is evalsseddar the remaining
parts of the sphere it is more difficult to find the maximum cosine. Most of the tineedd the
verticesA, B, C and D has the minimum angular distance with respect to the pBirEspecially if

30



4.2. MATHEMATICAL SOLUTION

P is located in the red marked area, the pdjhtvith the nearest distance is sometimes between the
boundary points. Unless the equations introduced in 4.1 are solvedtésndeation of the extrema,
Qs position cannot be told. Altogether, it is complex to find an exact solutiomrionpper bound

on cos a. Therefore, it seems convenient to search for a fast approximatiemioBsly, | already
thought of bounding cones for clustering distant lights for the lightcutsiglhgo. A similar clustering
approach can be used for directions on the unit sphere. The strugliine calledbounding capmnd

is explained in the next section.

4.2.1 Bounding Cap Approximation

Thebounding caps a very simple bounding structure. It represents a cap-like region amitephere
defined by a midpoind/ and an apex ang|é. This facilitates computing, because any calculation can
be done with respect to the midpoint. Afterwards, the apex angle is rejardi@ish the calculation.

In comparison to the introduced patch algorithm, a bound for the maximum ccemiiee defined by
just two lines:

Q= arccos(p - m)

maz(cosa) = cos(ay, — 3)

Picture 4.5 visualises the idea of creating a bounding cap which inheritshibécad patch.

M6y, 0mia)

(a) The green bounding cap fits the red patch. (b) Spherical view of
the bounding cap with
midpoint M and apex
angles.

Figure 4.5: Schematics for the bounding cap approximation.

31



CHAPTER 4. BOUNDING THECOS 6

The bounding cap has some prerequisites that must be satisfied:

e The patch is completely inside the cone.

The midpoint) is situated inside the patch.

The distance from M to the left and right border is the same, becausetttieipa symmetric
figure:m-a=m-c¢,m-b=m-d.

The midpointM has the spherical coordinat®g andegar = ¢yig = Cmintomar,

The apex angle of the cone does not exceed evenZ, if spherical patches are not allowed to
cross the equator.

4.2.2 Creation of a Tight Bounding Cap

It is very important to find a tight bounding cap with a preferably large lay@ing area of the spher-
ical patch and the bounding cap. In order to find a midpdihtallowing a small apex angle, it is
possible to simplify the problem: Find the midpoint for the circumcircle of a triangdated by three
vertices of the patch and project this midpoint to the unit sphere afterw@cddéing the vector does
not change the relation of the distances towards each other. Figureo8 #ie idea. It is based
on the assumption that the cap covers the patch entirely if all its vertices &e.i@adly, it does

not matter which vertices of the patch are used to create the triangle. Thenceater of triangle is
determined by the help of the median line of any edge. For all four possibiglegmthe median line
of AB or C'D is participating, so the result stays the same.

Figure 4.6: The circumcircle of th& ABC.

32



4.2. MATHEMATICAL SOLUTION

The pythagorean theorem helps to determine the distaricéom the base line to the circumcenter

U:
2
ol = \/ - ("5 @3)

r is the radius of the circumcircle and can be expressed in dependenay tofatingles’ surface area
St

. — 1o —alllle = blffla — ]
48

U’s position can be expressed as:

bh—
U:a—i—Ta—l—x

The vectorz can be obtained by rotating the base line of the triangle by 90 degrees totthadef
scaling it by the length obtained in equation 4.3. Finally, the vectisrscaled to a point situated at
the bounding sphere by normalizing:

u

lul

There is one pitfall left, if the initialy extent of the considered spherical patch is larger than half the
sphere. This leads to a midpoint on the wrong side of the origin. For implemehgrajgorithm, it is
important to keep this in mind.

4.2.3 Algorithm for the oriented bounding box

Point light sources are clustered by generating bounding boxes wsmyirthe lights’ spread. Sim-
ilar to the previously explained bounding procedure, it is also necessdinyd the minimum angle
between the surface normaland a bounding box. Therefore the problem is transformed into a coor-
dinate system, where the hit surface position is the origin and the z-axis is¢lsgah of the surface
normal. The problem is visualized by the subsequent figure:

The method to determine the minimum angle between the bounding'laoxd the hit surface normal
was introduced in the paper “Notes on the Ward BRDF” by Bruce Waltdr [241l present his ideas
and calculations in the following section and enhance them.

4.2.3.1 Minimum Angle - Maximum Cosine

Bruce Walter describes an easy way to calculate a bound for the anglth a minor cutback in
exactness. This disadvantage is compensated by the ability to handle wntuteded boxes. Figure
4.7 shows a schematic where the minimum incident light direction with respecthbotimeling box is
denoted by the red. The maximum cosine df can be written as the dot product between the surface
normal and the normalized incident light direction:

33



CHAPTER 4. BOUNDING THECOS#

max pz

min [py

14
/min Ipyl

xy plane

o/

Figure 4.7: The surface normal is aligned with the z-axis. The boundir@tie anywhere but sub-
tending the z-axis.

cost, =n-i

In a coordinate system where the orientation of the surface normal isitteeessthe z-axis the problem
can be reformulated as:

iz
\/ 12+ 12+ i

Replacingi, by its maximum possible value for the bounding box helps to maximize the term in a
first step:

cosl; =

max(iy)

\/zg + 2 + mawx(i.)?

cosf

tmin —

Depending on the closest or furthest, and:i, in relation to the z-axis is selected to minimize or
maximize the denominator. It is noteworthy, that expressionsike: (i, )> denote the maximum
obtainable squared value.

max(iz) : ) >
cosh, < V/min(ia)?+min(iy)2+(maz(iz))>? it maz(i-) 2 0
fmin = maz(i, otherwise

\/max(iz)2+max(iy)2+(mam(iz))2
The trivial case can be checked previously and sorted out: if the lrmyibdx subtends the positive
z-axis, then the cosine éfequalsl.0, of course.

34



4.2. MATHEMATICAL SOLUTION

4.2.3.2 Maximum Angle - Minimum Cosine

The minimum cosine can be computed in an analogous way. Therefore the minirhas to be
determined first. Then again, it depends on its sign, if the closest or $tithkies ofi, andi, are
used for minimizing the expression. The following drawing 4.8 shows exarfpié®th cases:

A
z-axis

min
Omax

G}

min

»

ny-plane

max, ‘

Figure 4.8: Bounds for the point light cluster boxes. The xy-plane is edppthe horizontal axis.

The formula for calculating the minimum cosine is denoted as:

min(iz)
> \/ma:c(iz)2+max(iy)2+(min(iz))2

maz = min i)

V/min(iz)2+min(iy)2+(min(iz))?
Again, the trivial case can be handled separately, if the bounding lixersis the negative z-axis. For
both the maximum and minimum angle it is not sufficient to look at the vertices ofiteted bound-
ing box. It is furthermore a necessity to consider the intervals createértiges. Since the oriented
box is situated at an arbitrary position in the local coordinate system thisecaadily evaluated by
iterating over the eight vertices of the box. Knowing the extent with redpezdach dimension allows
an easy evaluation of the minimum and maximum values of, ands..

if maz(iy) >0
cos 6 )
otherwise

35



36

CHAPTER 4. BOUNDING THECOS#



Chapter 5

Bounding the BRDF

This chapter is denoted to explain how the most difficult part of the lightcts estimation computes
an upper bound on theaterial termM of the lightcut integrator. This term iss 6 times the BRDF
of the surface. The previous chapter dealt already with boundingotheterm, the maximum and
minimum values for the cosine were calculated. For this chapter, these eautaken for granted.
All BRDFs depend on the reflection directiap and the incident light directios;. Due to light clus-
tering the incident light arrives from a set of directions. To bound th®BR is necessary to find a
local maximum of the BRDF for the given intervals. The task is easier, if thetion is monotone or
at least monotone for the considered interval. The first step to boundRbBé s to calculate the ex-
tent of the interval of the incident light direction. For the zenith afgleis was already demonstrated
in the previous chapter. Many BRDFs are symmetric around the z-axis.iTisesufficient to calcu-
late thed interval. If a BRDF depends on the viewers direction, things really get Goated. Usually
this involves the usage of the half-angle vector. | will demonstrate a methodaliawvs bound-
ing the half-angle vector. The subsequent sections address diffgpeis of BRDFs with increasing
complexity.

5.1 Lambertian

The Lambertian reflection is constant over the hemisphere of directiogauBe of it simplicity, |
used the Lambertian BRDF as a kind of debug BRDF during developmeng &ifjtitcuts integrator.
The value returned by the Lambertian BRDF is the incident radiancenover

fT<wi7wO) = %

The upper bound3;, for the constant Lambertian BRDF is trivial to compute. The figure 5.1
shows the development of the BRDF for the interf¢alf ):

1
Br(we,w,) = =

37



CHAPTER 5. BOUNDING THE BRDF

Lambertian reflection BRDF
l I I I I I

=

0.8 .

fwi,wo)
0.4 |

0.2 .

5.2 Oren-Nayar

Oren and Nayar created a microfacet based model for diffuse refieétidetailed description of the
model can be found in 2.4.4.1. The BRDF is defined by this formula:

fr(wi,wo) = g(A + B max(0, cos ¢; — ¢,) sina tan [3)

« andg offer the best possibility for computing an upper bound:

a = max(b;,0,)

g = min(6;,0,)

In contrast to the Lambertian BRDF this model also depends on the vievireccsidnw,. The interval

of 0; has a lower bound df and an upper bound &f. Otherwise the illumination would arrive from

a position behind the surface. The viewing direction also suits the same InfEmeaefore, it is just
necessary to find the minimum and maximaénn the intervalf; and the anglé, that yields the
maximum value okin a tan 3. There are three angle constellations, which can be observed in figure
5.1.

0, 6o 8o

V2NN A A
I NS | EE [ |
0 / / 2 0 / \ w2 0 / / w2
B min o max g min o max B min o max

Figure 5.1: The incident light intervé; and the viewing directiod, are used to bound the Oren-
Nayar BRDF. The minimum and maximum values are chosen to retrieve the maxifRi &rm.

38



5.3. STRATEGIES FOR THE HALFWAY VECTOR

The maximum reflection happens, when batand are as big as possible, because the sine and
tangent are monotone and continuous in the maximum possible inferval Taking the maximum
value of thed; andd, would be sufficient. To tighten the bound, the usage of the maximum possible
minimum is advised as shown in figure 5.1. Finally it is possible to denote the eygRds follows:

1
Bon(wc,w,) = ;(A + B)sinatan 8

0.6 T T T T T T T 0.6
6=0.0 ] 6=0.0
0=0.2 0=0.2
6=0.4 i 6=0.4
0=1.0 0=1.0
floj, 0g) f(wj, g)

o
NE}

o
N

6j 6j

@) 0, = 0.2 (©) 6, = 1.2

Figure 5.2: Two example plots of the Oren-Nayar bound with varying roagf¢). In the left figure
the viewer's direction in relation to the surface normal is very steep comphezexample on the
right.

5.3 Strategies for the Halfway Vector

The Torrance-Sparrow microfacet model determines the maximum refldayiche help of the
halfway vector. This vector is well known from the Phong lighting model, Wwhga simple ap-
proximation for calculating reflected light. The Phong model achieved its pearhsiatus, due to its
easy nature and great results - without being physically correct aathe 8me. The model proposed
by Torrance and Sparrow simulates the reflection behavior of rea@casimuch better by comparing
the halfway vector to the orientation of the microfacet. Since this reflectiomitidgois mainly based
on this comparison, it is crucial to know the halfway vector. The lightcutsr estimation has to deal
with an interval of incident light directions. As a consequence, the hglfweator also points at a
certain range. So, the first task is to determine a bound for the possibleakialéctor directions,;,
as illustrated in figure 5.3. The method depends on the type of light clustfollbwing subsections
explain this for two bounding structures. The point of interest with resjpethe Torrence-Sparrow
BRDF is to calculate the maximum angle between the viewing vector and the haléetor denoted
by maz(6;) and additionally the minimum angle between the surface normal and the haléetyr v
min(0y). | will focus primarily on the computation of these two angles or rather theinepsvhich

is equivalent due to their direct correlation.

39



CHAPTER 5. BOUNDING THE BRDF

®,

xy plane

o/

Figure 5.3: Incident radiance arrives from light clusteB3. In combination with the viewing direction
w, a bunch of halfway vectorsy, is generatedy, is the interval of angles betweernandwy,, whereas
07 is the interval of angles between andw;, (compare to figure 5.3.

5.3.1 Bound For The Point Light Cluster

To bound the halfway vector, it is necessary to find its set of directiongge® a bounding box and the
viewing vector. A nice method for bounding the half-way vector was piteskby Bruce Walter in his
paper called “Nodes on the Ward BRDF” from 2005 [26]. He describeansformation into another
coordinate system where calculation of the minimum and maximum angle beiwee the bunch
of directionswy;, can be done easily. The scenery is rotated in order to match the viewingjatirec
to the z-axis. Figure 5.4 shows a scenery where this transformation wésdaprhe relationship
between the incident light direction and the halfway vector can then be faredas:

0; = 205

¢ = o
The star indicates the usage of a different coordinate system. At thisipardlready achieved to
bound the maximum and minimum angle between the viewing vector and the inciderditgction,

as the bounding mechanism from 4.2.3 can be used again. The bound aosihe returned by the
algorithm can then be used to calculate the half-angle bound with respeeti@tter’s direction:

40



5.3. STRATEGIES FOR THE HALFWAY VECTOR

A%

o

xy plane

Figure 5.4: A rotated coordinate system is used to baljnd, is used as z-axis, the surface normal
lies on the xz-plane.

o
cosl, = COSEZ

Applying the trigonometric formula for multiple angles this leads to:
* 1 *
cosfy = =+ 5(14-00891-)

It is safe to omit the negative sign in the previous equation, bedguse[0; 7] and thereford; <

[0; 3.
After the minimunmy; has been determined, this leaves only@theo be bound. Itis the angle between
the surface normal and the halfway vector. This can be achieved bgditite maximum cosine of

the angle:

costp, = h-n=h"-n*

In the new coordinate system this can be expressed as:

sin 0;; Ccos (ﬁ; sin 9;‘] cos (j);‘L
cosl, = sin@} sing; | - [ sin6}; sin ¢
cos 0 cos 0}

With the surface normal lying on the xz-plang; (= 0) the equation can further be simplified:

sin 0} cos ¢, sin 67

cosfp = [ smoising; |- 0" (5.1)
cos 0 cos 07,

= sin6j cos ¢y, sin ), + cos 65, cos 0, (5.2)

41



CHAPTER 5. BOUNDING THE BRDF

The angles of the transformed normﬁl are fixed and result by applying the transformation matrix
to the initial surface normal directio o . The task is to find appropriate values fgf and?; that
maximize the previous expression. Itwould be safe to replacg;theth its maximum possible value
of 1.0. Yet, itis necessary to find the maximugj) for the whole light cluste€, as the goal is to obtain

a bound as tight as possible. This can be done analogously to the wayrafibg thecos 8 in 4.2.3.
Figure 5.5 illustrates the idea.

min Xmax

y-axis

ymax

Ymin

¢max

q’min

xV

-axis

Figure 5.5: Determining the maximum and minimum valuesifandy leads to a bound for the angle
¢ by using the Pythagorean equation.

The last step after the computation of thex(cos ¢7 ) is the selection of the appropriadg out of its
previously calculated interval. This can be achieved by calculating theatige with respect t@;
and finding the maximum:

= 0

0 = cos#;maz(cos¢y)sinb; — sinb; cos,

If this equation is solved fatos 5 < [0; 1], there is one solution left:

0 cos? 6%
COS =
h cos? 0% + sin20% [max(cos ¢} )2

It is still necessary to verify the solution, because the extremum could alaorbnimum.

= —siné;max(cos ¢y,) sin b}, — cos 6, cos 0},

42



5.3. STRATEGIES FOR THE HALFWAY VECTOR

If the result of the second partial derivative<s0 then the result is a maximum and it can be used
for the following step. Otherwise.0 is used as upper bound. The solution fgrandmax(¢;,) is

put into the equation 5.2. The final bound for the halfway vector can rewatculated. If all these
computations pay off - it depends. Especially computingghean be omitted by taking the upper
bound of1.0.

5.3.2 Bound For The Directional Light Cap

The creating of a bound for the light cap is much easier compared to thsysdvox bounding
approach. A bounding cap consists of a normalized direction vegtand an apex angla. The
halfway bound is really simple. At first it is necessary to define the poss@fevay directions. This
can be done by using the initial definition of the halfway vector and the direggotor of the cap:

Wo + wj
2

wWp =

The apex angle for the halfway vector is half the apex angle of the indiigémdirections:

«
ap = 5

Now it is possible to calculate directly the minimum angle between the surface remmchéne halfway
vector, denoted by, and the maximum angle between the viewing vector and the halfway vector,
denoted by; :

min(fy) = arccos(n-wp) — ap

maz(0}) = arccos(wp - wo) + ap

5.3.3 Microfacet Modell

All the previous preparation steps are needed to find a bound for tmanbe-Sparrow microfacet
model. The model uses this BRDF:

D(wp)G(we, w;) Frr(wy)
4 cos 0, cosb;

fr(p, wi7w0) -

The advantage of the model is the possibility to bound each term separdkédynss in the numerator

get maxed and the only variable term in the denominatep); is bound for its minimum value. A
minimum bound for theos §; can be calculated using the methods described in the previous chapter,
so it is just omitted here. Altogether this results in the final bound for the Roer&parrow BRDF:

maz(D(wp))maz(G(we, we))maz(F(w,))

B o) =
T5(p, we, Wo) 4 cos 0,min(cos 6;)

The following three subsections describe the bounding mechanism of deetéims:

43



CHAPTER 5. BOUNDING THE BRDF

5.3.3.1 Max(D(wy))

If the Blinn microfacet distribution is used, the upper boundfgtyy,) is:

Do) = X2 ()
Diws) < 6;2(max(cos9h))e

5.3.3.2 Maz(G(we,w;))

An upper bound for the geometric attenuation term G is:

o) = min (i (200 ) 20l

, . (2max(cosOy) cos b, 2max(cosb)maz(cosb;)
< mun | 1,min . , -
min(cos 0} ) min(cos 0} )

G (wo,we)

5.3.3.3 Maz(F,(w,))

The Fresnel function for the Torrance-Sparrow BRDF uses the hglivector as replacement for
the surface normal. So, for the incident light direction, the interval of tigdesd; is applied. It was
discussed previously how to create a bound on this interval. This is why éatett as already known
here. To solve the bound for the Fresnel term in a more general wagndtel the incident light
direction by6; and notd; .

The Fresnel dielectrics term inherits the transmission ahgledepends on the materials participating
at the position where the light hits the surface. The sine of the reflectiortiding; can be defined in
terms off;:

sinf, = Lsing; (5.3)
ui

costy = +/1— %sin 0; (5.4)
t

0, is defined to be the angle between the negative z-axis and the transmissictiodjrwhich has

to obey the interval0; 7]. It is just necessary to be sure that the transmitted light really enters the
material. Then the negative sign can simply be ignored. If the expressiandé; is put into the
Fresnel dielectric equation from 2.1 the resulting equation gets really congalidagets even worse,

if the derivative is calculated and set@do determine the extrema. It is so complex, that | could not
solve it by hand - so, for the Fresnel dielectric term, | always use theruppund of1.0. For the
Fresnel conductor term, it is much easier: It is worth to examine some exatopseopthe Fresnel
term for a few selected materials. | used th@ndk values given by table 2.2.

As it can be observed in the plots in figure 5.6 it is very likely, that the Fidanetion has at most
one extremum in the interval; 5]. This can be confirmed by determining its position. Since this
leads to a huge mathematical term with many solutions, it is better to examine the wtioffigrfor

44



5.3. STRATEGIES FOR THE HALFWAY VECTOR

1.0 1.0

il
n
gl z+n)
n
F(n+n)
Fr(wj) Fr(wj)

0.0 0.0

6j 6j

(a) Gold (b) Silver

Fr(oj)

0.0

9
(c) Steel
Figure 5.6: Three example plots of the Fresnel term with different mateTiaésred curve demon-

strates the amount of reflected parallel polarized light. The green cutlre equivalent for perpen-
dicular polarized light. The blue curve is the fresnel reflection for und light.

perpendicular and parallel polarized light separately. The partialatee of the Fresnel equation for
parallel polarized light leads to the following equation:

or| 2n(=2n + k? +n? + (k* + n?) cos(26;)) sin 6;
2. 2

90, 1+ 2ncosb; + (k% + n?)(cos 6;)?)
If this equation is solved for its extrema, the following solutions are acquired:

a’l” ||
00;

1
0; = =<Larccos| t——m—
( vk2+n2>

45



CHAPTER 5. BOUNDING THE BRDF

This results in four solutions. The plots show that it is very likely for onetsmhuof 6; to be situated
in the interval[0; 7]. The next step is to analyze, the partial derivative of the fresneltiequéor
perpendicular polarized light:

or (1 - 2k? — 212 + cos(26;)) sin 6;
00; (k2 4+ n2 + 2ncos b; + (cos ;)2)?2

Again, the first derivative is solved for the extrema:

or |
a20; 0
0; = +arccos(£+v/k%+n?)

The procedure is quite the same as demonstrated with the parallel polarizebeigte. Yet there
is one important difference: the extremum is less likely to be in the int¢ovgl]. This is the key
that allows bounding the fresnel term for conductors. If the extremaeopérpendicular polarized
light equation are outside of the interv@, 5 ), then the function is monotone inside. Of course, the
extrema can be precalculated for the initialization values @fid% using the above formula to make
sure that this is definitely the case. The second assumption that the pavidhitgd light equation

has a minimum inside the interved; 7) does not harm the bounding procedure, because the goal is

to determine the maximum value in the range for a set of light directions defindtelhelp of the
incident light's bounding structure. Therefore, it is sufficient to cakeuthe maximum for the two
limits of the given interval fob;.

46



5.3. STRATEGIES FOR THE HALFWAY VECTOR

1.5

oy
26;
Fr'(wj) Fr'(wj)
— ]
-0.5 -0.5
0 z 0 z
6j 6j
(a) Gold (b) Silver

Fr'(wj)

6

(c) Steel

Figure 5.7: The plots show the development of the first partial derivatitie respect ta); for the
Fresnel term with different materials. The red curve demonstrates thenarabteflected parallel
polarized light. The green curve is the equivalent for perpendiculariged light.

a7



48

CHAPTER 5. BOUNDING THE BRDF



Chapter 6

Algorithms for the Infinite Area Light
Source

The purpose of this chapter is to show the general usage of infinite arésdigth how it is used in
combination with the lightcuts rendering system. Also, some algorithms are prdsesmich demon-
strate how to convert an infinite area light into a set of directional lightcssur

6.1 Fundamentals of Infinite Area Light Sources

The infinite area light source is nothing else than a huge light sourceusuling an entire scene. So,
there is just one infinite area light possible in each scene file. It can be iethgga sphere casting
light from any direction into the scene. This method is commonly used to realistidallyinate
synthetic objects as if they were in a given environment. It requires akepthat someone actually
captured the illumination situation in this environment. For a good estimate of the illunmretio
image with high dynamic range should be generated. Paul Debevec @ssenibethod how this can
be done using standard digital photo equipment [5]. The data structuiregstioe light information
is mostly referred to abght probeor radiance map This image based lighting approach had a big
impact on the realism of computer graphics. The initial usage of environmaps was for reflection
mapping firstintroduced by Blinn and Newell in 1976 [3]. They used admlivn image representing
the environment of a room to illuminate the Utah teapot. Later on, the reflectiopingafalso called
environment mappirjgvas used to efficiently simulate complex glossy and mirroring surfaces by the
help of a precomputed texture image. The method is widely used in up-to-dafitar games and
other real time applications on recent raster-graphics based hardwarerks by looking up the
reflection direction in the environment map to calculate the color of the inciddnitdighe rasterized
surface position. This is only done to simulate reflection effects, but mat iog global illumination.
The PBRT ray tracer and other global illumination systems can use environmams as infinite
area lights affecting the lighting of all objects, whether they are glossytoiThas means that diffuse
surfaces, which reflect received light from any direction, must sathpléght source in an appropriate
way and not just look up the reflection direction. The teadiance maps generally used for the
storage texture of incident light in contrastanvironment map

49



CHAPTER 6. ALGORITHMS FOR THE INFINITE AREA LIGHT SOURCE

6.2 Data Storage for Infinite Area Lights

The radiance maps store incident light from all directions. They aresaedevia spherical coordinates
(0, ¢), texture coordinates (u, v) or discrete integer coordinates (x, y9ra#pg on the actual usage. |
tried to use the spherical representation as often as possible. A commesengjation for the radiance
map is the latitude-longitude mapping. That means, the map can be accesgdubrices coordinates,
asitis showninfigure 6.1. The mapping allows for partitioning the map into regilmmg the latitudes
and longitudes. This property is useful later on for the median cut algotiHractionise the light.

0

o

Figure 6.1: Environment map with latitude-longitude mapping.

6.3 Median Cut Algorithm for Infinite Area Lights

Paul Debevec presented a method to approximate an infinite area lighe $yuusing a predefined
number of point light sources. | adopted this technique to create repadise distant light source for
the lightcuts rendering system. The idea of Debevec’s algorithm is to crehte &gpositions where
incident illumination is likely to occur. These directions are already given byligint probe image
itself! Light probe sampling already was the topic of many papers andragsigethe past. Beginning
with simple stratified sampling up to structured importance sampling by Argawal|[&i,&here are

many algorithms solving the sampling problem. The proposed method by Detagnpers with its

simplicity and well conditioned splitting behavior which creates regions with lezpergy. Another

advantage is the option to use it as a progressive splitting algorithm, whidbrtiaer refine a specific
region by splitting it again. A split result in 64 single lights by Debevec’s algor can be observed
in figure 6.2.

Figure 6.2: Split results obtained with the original median cut algorithm for pgbibe sampling.

50



6.3. MEDIAN CUT ALGORITHM FOR INFINITE AREA LIGHTS

Before | start to explain the split algorithm, it is necessary to know how taitzke the total radiance
emitted by a region. Therefore the light probe (usually available in Il mappéngad at a per pixel
level. Each pixel of the light probe represents a differential solid angle sphere of incident light
directions. The extent of a pixel can be expressed in intervals éoid ¢:

L0 102

Figure 6.3: Intervals for a pixel of a Il map.

The formula from 2.1.3 helps to calculate the solid angle for all the pixels. Bahd angle (which is
equivalent to the size of the differential area of a pixel on the unit g)liemultiplied by the emitted
radiance. The result is the relative emitted light energy from these dirsatiche light source:

q)Piz = AL
= (—¢1 + ¢2)(cos by — cosls) Y

The previous formula is an addition to the algorithm introduced by Debewesukigested to scale the
size of the patches simply by multiplying withs 6,,,. | think using the solid angle is a better measure.
The emitted radiance is most likely expressed?asB value. Due to human perception anomalies it
is necessary to express the emitted light as weighted average of the catoreth By following an
ITU-Recommendation these weights afe= 0.2125R + 0.7154G + 0.0721B.

Meeting all the prerequisites, it is now possible to calculate the relative emittecehighgy for each
pixel. This implies that the same can be done for the entire sphere of diregigires for a distinct
region. The proposed algorithm by Paul Debevec geneétesgyions of similar energy and works as
follows:

The radiance emitted by the light source is calculated by summing up the rattiamcall participat-
ing pixels in that particular region:

q)Region = E O piz

pix
In each summand the solid angle of the patch is used. Thus | recommend aicplate the solid

angles used for scaling and store them in a table. The position of the ligltesswdetermined as the
center of the region:

51



CHAPTER 6. ALGORITHMS FOR THE INFINITE AREA LIGHT SOURCE

Algorithm 1 MEDIAN_CUT_ALGORITHM_FORLIGHT_PROBESAMPLING(n)
Require: n >0

1: add entire light probe as singlegion to regionlist

2: fori=0tondo

3. forall regions € regionlist do

4: subdivide region along its longest dimension such that its light energy is divided evenly
5: add newregions to resultregionlist

6: end for

7. if i<n—1 then

8: regionlist = resultregionlist

9: else

10: for all regionse resultregionlistdo

11: lights.add(GENERATE.LIGHT _SOURCE(region))
12: end for

13:  endif

14: end for

return lights

61406
0, — 1-5 2
+
bm — ¢12¢>2
sin 0, cos ¢pm )

Lpos = ( sin Oy, sin ¢,
cos O,

6.4 Improving the Position of the Light Sources

It is possible to improve the position of the light sources inside their regioa.cEmter is a good
approximation when the regions are already small. For big regions, imagieatihe image divided
only once, the center would be the direction all light energy is arrivinghfréhis can yield a big
error, as in the image there might be a dark spot. This leaves some spawse foethods which try
to improve this shortcoming.

6.4.1 Centroid

This is the first method, which tries to improve the position of the directional ligintce. The centroid
simulates the characteristic of a region much better than the center. Eaclopdbehsphere emits a
certain amount of radiance, which is precomputed and stored in an arfagtaccess. This algorithm
is used to calculate the centroid:

6.4.2 Random Sampling of the Spherical Patch

As an alternative to the centroid method, it is also possible to calculate a rgpukition inside the
region, denoted by, and ¢,.. It can be used as a static position for the light source of even better

52



6.4. IMPROVING THE POSITION OF THE LIGHT SOURCES

Algorithm 2 CENTROID
1: for = =z, 10 Ty dO
2 for Y = Ymin to Ymaz do

3 accu «— accu + radiance(x,y)

4: accuy, < accuy + x * radiance(z,y)
5 accu, — accuy +y * radiance(z,y)
6: end for

7: end for

. accug
: i — L
8! Teentroid accu
. accuy
9! Ycentroid <= geey

re-evaluated for each lighting request. This makes the light source esghi&sed in a Monte Carlo
sense. To compute a random sample for the region, it is necessary tm lmed that sampling a
spherical patch is not uniform. Unfortunately, built-in functions in progméng languages can easily
create uniform distributed random integer values. Therefore the iovensethod is used to map a
uniform random variable to the real distribution created by the propertithe spherical patch.

Much literature can be found about the correct sampling of a sphelrealdg wrote about sampling
techniques in my student thesis work [17], so | will not repeat the bas&anapling theory here. The
presented method for sampling a spherical patch, is a modified version algibréthm introduced
by Matt Pharr and Greg Humphreys in a paper alboyiortance sampling of infinite area lighfsee
[21]). The considered spherical patch has its extent in the intdvalg, | and[;; 62]. These intervals
represent a range of pixels of the radiance map, which can be intetjaiete2D distribution function
f(u,v) overluy, ug] X [v1,ve] (u1 < ug; v1 < vg; u,v € Np). The solid angle of each pixel is then
accessible vig (u, v) (u represents the column andhe row of the pixel). That is the key to define
the probabilityp(u, v) of a pixel to be picked, also called the probability density function (PDF) for
an outcome ofi andv:

)
Plv) = s o )

It is the solid angle of a pixel divided by the total solid angle of the regionc@ifrse, the integral
over all probabilities equals ond p(u,v)), because one event is definitely happening. Gladly, the
spherical patches have the same size in each column, so the probability aplticolumn is the
same. This means the marginal density function for the columns is constant:

pu() = 2ty fwv) 1
“ Dty Doy f, ) ug —uy

u=1u1 V=01

This definition helps to define the conditional density for the rows:

_ fu
Pl = S o)

V=01

53



CHAPTER 6. ALGORITHMS FOR THE INFINITE AREA LIGHT SOURCE

| previously mentioned the inversion method to map uniform random variabkesiéined distribu-
tion. The method needs a cumulative distribution function (CDF) to work. A GIDF) is defined as
the probability of the random variabl€ to get a value less or equal #0 Therefore the probability
for « is accumulated with all previous probabilities:

xT

Fy(z)=P,(X <z)= Z p(u,v)

v=vl

The inversion method can now draw a sample by using a uniform randomengmb [0..1]. It is
compared to the function values of the CDF (which is monotone) and thus thé initén be looked
up. In practice, an array is created which holds the accumulated probahilitieo thez-th element.
Then the values stored in this array can be searchegl foine algorithm stops, when a value greater
or equal ta¢ was found and returns its position in the array. Afterwards, the valuensfoaned into
the correct sample position for the light source position. The sourcefoodkis algorithm can be
looked upin 1

6.4.3 Dynamic Infinite Area Light for Lightcuts

In the process of implementing the lightcuts algorithm | thought much about tjetive effects
of fixed, precomputed light trees. The dynamic generation of a light treetrbgla much better
approach, because it can adapt to the needs of the rendered steady knew the median cut paper
from P. Debevec and explored, if the algorithm could be used in a Bsigeeway. In comparison
to a simple split-at-spatial-median algorithm, the proposed median cut algorittenthesenergetic
median as split position. This is a major advantage for the lightcuts error estimatitne, since
after each split the error is at least bisected due to the direct correlditesroo and a light's emitted
energy. When the lightcuts renderer is started and an infinite area ligletdsargy two representative
lights are created: one for the upper and another one for the lower Hesmésjizach light stores some
information about its size, emitted radiance and representative directioaniFoay hitting a surface,
the lightcuts integrator starts evaluating the illumination by pushing the root raddés lights on
the lightcuts stack. If the error estimation routine decides that the reprégeright's error is too
big, it will be refined. This is done by median cut splitting the light and adding tihéoinfinite area
light tree at its appropriate position. Refinement can also be denied by thedigite, if it already
reached a minimal predefined size. This can either be a predefined sgled@ansimply a bound
given by the radiance map resolution. The dynamic trees help to redueeassary preprocessing
time. Additionally, it is possible to use very high resolution environment mapssantple them
dynamically! Most ray tracers always use a fixed number of infinite aréa $igurce samples. The
lightcuts system decides by the help of the error estimation for any hit sunfag many samples are
necessary to stay within a predefined error bound.

6.4.4 Comparison of Dynamic Light Trees after Rendering

Figure 6.4 shows the radiance map used to illuminate the scene in figure 6 &érteewas rendered
with the three different light sample strategies described in the previotisrsgcThis results in a

54



6.4. IMPROVING THE POSITION OF THE LIGHT SOURCES

change of sample positions as visualised by the plots in figure 6.6. The datdarshe plots are
the leaf node positions of the dynamic light tree created while rendering: & éulti expanded tree
without the positions of the representative lights. Figure 6.6(a) showss#uéts for using theenter

of the regions which leads to samples situated at rather grid-like positioescertiroid strategy
creates samples next to brighter regions. This can be easily observesidiying the samples at the
lower hemispheref(> 7). In comparison to the previous center strategy image, the lonely samples
disappear because the lower hemisphere of the radiance map is entir&lyTiladast figure 6.6(c)
shows the result for using the statemdomsampling strategy. Of course, this looks different for each
rendering process, since the sample positions are drawn randomly.adgies have in common to
create a light tree with heavily sampled bright regions, due to a high potentialistroduced by
very bright light sources. A further discussion with respect to the qualititle rendered images can
be obtained in chapter 8.

Figure 6.4: Sunset radiance map.

Figure 6.5: Scene with two spheres illuminated by the sunset radiance-map.

55



CHAPTER 6. ALGORITHMS FOR THE INFINITE AREA LIGHT SOURCE

phi

(a) Center

phi
(b) Centroid

phi

(c) Random

Figure 6.6: Samples created by three different strategies.

56



Chapter 7

The PBRT Rendering System

The PBRT rendering system is a full featured ray tracer. It accompanies Mattr'®l@and Greg
Humphrey’s book on physically based rendering [22]. The ray traaey initially used for didac-
tic purposes in a computer science course at Stanford Universityta/gears it evolved to a robust,
rendering system with rich features. | chose it for my own implementatiomusedt is plugin-based,
extremely well documented and extensible. To be able to integrate the lightcait# idas necessary
to understand how PBRT works in the first place. This chapter giveaghroverview of the system
and additionally some implementation details of the lightcuts integrator.

7.1 General Overview

The basic mode of operation is demonstrated in figure 7.1.

Sample \ Samp7/ Ray

Scene::Render()

Ray
_
} Integrators
-

Radiance

\ Radiance

Figure 7.1: Diagram for PBRT’s main rendering loop.

Rendering is started in the main render loop by retrieving samples for eacle saagple from the
Sampler TheCameratakes a sample and generates a ray direction. Then the ray directionrig@ive
the Integrator, which calculates the radiance arriving for this direction. Fiim stores the retrieved
radiance in an image. Rendering is complete wherStmplercreated enough samples to generate
the final image. All the components are abstractions with an interface. Teysrtay be replaced by
an algorithm fitting the minimal interface requirements. Therefore PBRT is eebfis a rendering
core with additional plugins. Less memory consumption is another advantidlgis structure: The
program dynamically loads the plugins it needed and leaves out unaeceses.

57



CHAPTER 7. THE PBRT RENDERING SYSTEM

7.2 Integrators

The most interesting part of the PBRT rendering system are the integhatiinga They handle rays
shot into the scene and need to determine the radiance. Of course, this a abstraction for all
ray casting based algorithms. In versibf2 of the ray tracing system there already exist integrators
for bidirectional path tracingdirect lighting photon mappingirradiance cachingand the original
Whitted algoritm The general functionality of an integrator can be looked up in figure 7.2.

Primitive::Intersect()

Ray Intersection

Accelerator::Intersect()

Ray Intersection

Ray

_

Sur +Li()

BSDF
} ::GetBSDF()

= |

Radiance

Radiance

Light::Sample_L()

Figure 7.2: The diagram shows the class relationship of the Integrataetiomn.

A ray created by the camera and sent by the main rendering loop is peddegshe integrator to
obtain the radiance along that ray. That is the task for the integrator: fendldisest object the ray
intersects with. This can be done by askingAtoeelerator It is an abstraction for all objects situated
in the scene. Testing each object separately is very expensive, sdibgistructures are used to
speed up this process. If an object was determined, the result is idas@Eintersection This is an
abstraction to store properties of the intersected surface. By the help GEtBSDF()method these
properties are evaluated to add the material properties for the intersectiinheLightsare used
to calculate the illumination. Finally the accumulated reflected radiance for thie rafurned to the
main rendering loop.

7.3 Direct Lighting Integrator

The direct lighting integratoris a rather simple method to approximate the LTE. | introduced the
theory already in chapter 3. To be able to start with the lightcuts implementatioasiéstial to know
how shading is done by the direct lighting integrator. Remembering the dirbtihiigapproximation,

it is possible to break the LTE down into a sum over all lights in the scene:

Z/Sfr(pvc‘?o>@)Ld(l)(p7@) COSQi du};
l

To estimate the direct lighting integral for one light, it is necessary to chdosetidns for sampling
the light source and the BSDF. Sampling can be done efficiently by using muitipertance sam-
pling thus incident light directions and reflective BRDF directions are iggadé.Importance sampling
is a method for estimating integrals generally faster compared to the Monte CdHodnPlenty of

58



7.4. LIGHTCUTS INTEGRATOR PLUGIN

work has been done to explore sampling strategies. The interested meagrok it up in [22], [17]
or [1]. The problem can be simplified, if the participating light sourcedat& lights Then the light
source direction is fixed, because light is received from only onetibrec he pseudo code 3 explains
how lighting with delta lights is done:

Algorithm 3 DIRECT_LIGHTING (ray)
1. L=0.0
2. if ray intersect®bject then
3. calculateintersection
4: L+ = emittedlight by intersecte@bject
5. forall lights € scene do
6: L+ = BSDF % L; x cos 6; /lightpdf
7.
8
9

end for
if actualraydepth < mazximumraydepth then
if BSDF is reflecting lighthen

10: L+ = DIRECT_LIGHTING( reflected ray )
11: end if

12: if BSDF is refracting lighthen

13: L+ = DIRECT_LIGHTING( refracted ray )
14: end if

15:  end if

16: else

17: L = background

18: end if

7.4 Lightcuts Integrator Plugin

This section informs about the general functionality of the lightcuts integpityin. Thelightcuts
integratorwas developed in several steps.

7.4.1 Preprocess()

At first | implemented a preprocessing method to ensure that all lightcuts ¢imheplaght sources
are detected and appropriate light trees are built. Fihepr ocess() method of an integrator is
called after the scene file was parsed completely and all objects have s&attiated. By checking
all lights it is possible to determine lightcuts compatible light sources: point lightslstaht lights.

It would also be possible to use explicit lightcuts lights, but then existing sfilesecould not be
used by simply switching the integrator. If an infinite area light is used for lightinis is different
and must be explicitly changed in the scene description due to dynamic traeséxp. To be able to
modify the light tree while rendering, the integrator needs to access the ligfgtfi@ving new child
nodes. That is generally impossible with PBRT's plugin design, becaugiploan only access each
other via basic interface classes defined in the rendering core. Aftiswthe preprocessing method

59



CHAPTER 7. THE PBRT RENDERING SYSTEM

generates &i ght Tr ee for each light type. This involves generating@tree for point lights and a
minimal binary tree for the dynamic infinite area light tree as well as a binanfdredistant lights.
Tree generation is started by calling thei | dTr ee() method of the adequaté ghTr ee.

7.4.2 dolLightcut()

The second step was the adjustment of the direct lighting integrator to uséréightinstead of real
light sources. The direct lighting code calls ttheLi ght cut () method to evaluate the lighting at
the intersection point. This is done separately for each available light tvadudion begins by in-
serting the root node into the lightcuts queue, which is used to store the pattiaipating nodes of
the light tree. At this point the functioast Er r () is called to calculate the maximum possible error
introduced by using the representative light of the actual node instehe ofal ones. It depends on
the result of the error term how the algorithm continues. If the error isAbitle predefined perceptual
threshold, the representative light is used for the lighting calculation angletely evaluated. Other-
wise, the children of the light node are added to the lightcuts queue anddhestimation algorithm
starts again for those. The methedst Er r () uses the intersection point with its surface normal,
the direction of the ray and additional information from the light nodes to ahéterthe error. Each
component of the final term is computed separately. For computing anxapitteon of the material
term thebsdf - >BRDFBound() method is called. The implementation was realized in a third step
in the global reflection clad8SDF.

Algorithm 4 DO_LIGHTCUT (ray)
1: workqueue.insert(lighttree.root)
2: lightqueue.clear();
3. while workqueue not emptydo
4. light = workqueue.pop();
error = CALL ESTIMATEERROR(ight)
if error < perceptualthresholthen
lightqueue.pusli{ght).
else
workqueue.pust{ght.children)
10:  endif
11: end while
12: for all light € workqueuedo
13: L+ = EvaluateDirectLighting fotight
14: end for

7.4.3 Helpers of the Lightcuts Integrator

Several classes and methods are used to assist the lightcuts integrator.

60



7.4. LIGHTCUTS INTEGRATOR PLUGIN

7.4.3.1 Lighttree

ThelLi ght tr ee class and derived classes for each type of light tree are used to intidtlyama
finally delete it. Especially thénfi ni t eLi ghtt r ee has a metho@éxt endTr ee() to dynam-
ically create new child nodes if necessary. The generation of repatiserlights is also realized in
theLi ght t r ee class.

7.4.3.2 InfiniteArealLightLC

Thel nfi ni t eAr eaLi ght LCimplements the infinite area light for lightcuts. It reads a HDR light
map in.exr file format to generate new median cut sampled representative distanceTigatéght
source position is determined by using one of the following four differeategiesmid, centroid,
staticrandom anddynamicrandom. The latter differ in dynamic vs static placement of the light's
position.

7.4.3.3 DistantLightLC

Special distant lights are used in the infinite area light tree. Baclt ant Li ght LC knows its rep-
resentative extent on the light map. The constructor creates the bowagirtyy the help of the pro-
cedure described in chapter 4. The metbadindCosThet a( const Nor mal & n, Vect or*
Wi ) computes the bound for the cosinefof

7.4.3.4 Moadifications to the core

Bounding the BRDF works best, when it is done in the BRDF coordinateraydteerefore, the re-
quired methods have been implemented in the basic reflectionB$a¥s Each lightsource type uses
its own function to bound the bsdf term. The metlBRDFBound( ) is called with a referenced data
structure for exchanging related information. Because PBRT usesppe@iralass to enable multiple
BRDFs for a surface, thBRDFBound collects the bounds of all participating BRDFs. If a reflection
model is not yet supported, it returns an upper bountl. @by default. Otherwise the bound on the
BRDF is calculated by calling theound() method. Additional modifications were necessary on
the default light interface, since the PBRT developer designed it faisfpand not for light object
modifications.

61



CHAPTER 7. THE PBRT RENDERING SYSTEM

62



Chapter 8

Results and Discussion

This chapter is denoted to present rendering results for selectedssttestgows the major achieve-
ments of the lightcuts algorithm. Additionally, | will also discuss some disadvastagd draw a
conclusion indicating aspects to be further investigated.

8.1 Benchmarks and Evaluation

All scenes were rendered by an Intel Pentium M machine with 1400 Mhz dock and 512 MB
of RAM using Ubuntu/Linux. | created and rendered some scenes with figdrysources, to show
the benefits of the algorithm, i.e, the reduction of shadow-rays in compaosihie standard direct
lighting integrator.

8.1.1 Scenes with many Light Sources

The first examined scene visualizes three balls with different materials aeddsred with one pri-
mary ray for each pixel. The left one uses a perfectly diffuse materaahfiertian BRDF), the middle
one uses a material similar to plastic (Oren-Nayar BRDF) while the right oeg ashiny metal
(Torrance-Sparrow BRDF). Figure 8.1 shows the scene renddtiedlinect lighting and the estimate
by using the lightcuts integrator. The following table presents the data obtaimeddering the scene:

Point Lights | Shaded Points Shadow Rays Shadow Rays Per Sampleilmage Time
10006 63.9k 5.765M 90,2 76.7s
10006 63.9k 374.454M 5860 1389.7s

Table 8.1: Scenel, rendered in a resolution of 300x200. The objexrnpters used for the spheres:
Oren-Nayaw = 0.15, Microfacet(Blinn)e = 45.3kr = (0.7,0.7,07)ks = (0.5,0.45,0.35).

This scene uses a setting with almost perfect preconditions for the lightcthednd@he number of
lights is very high, which enables efficient clustering. In comparison tacdirghting using each
light source separately, the lightcuts method can often use the represelghti to generate the final
image. This leads to over fifty times less the number of shadow rays whiclisr@simpressively

63



CHAPTER 8. RESULTS AND DISCUSSION

reduced rendering time. Even a close examination of both images reveaisiliie error. The dif-
ferential image from figure 8.1 shows a strong enhancement of theietroduced by the clusters.
This phenomenon meets the expectations, which were already descridéadbet al. in the lightcuts

paper [28]. The observed error appears to be greater in veryt begions.

64



8.1. BENCHMARKS AND EVALUATION

(a) Reference image

(b) Image generated with lightcuts

(c) Differential image with magnified error

Figure 8.1: Three images showing a scene rendered with direct lightinggancuts. The maximum
allowed error threshold was set@d1.

65



CHAPTER 8. RESULTS AND DISCUSSION

8.1.2 Modifying the Error Threshold

By noticing the magnified error in the previous section it seems appropriatalgsa the expansion
with different error threshold values. Figure 8.2 illustrates the visuakedfby increasing the light-
cuts’ error threshold. The accompanying table 8.2 demonstrates theecimasigadow ray count and

rendering time:

error threshold Shadow Rays Shadow Rays Per Samplemage Time
0.01 5.765M 90,2 76.7s
0.02 4.045M 63,3 56.4s
0.04 2.917M 45,6 41.2s

Table 8.2: The settings are equal to those in in 8.1. The scene uses 100@®ligces.

(a) error threshold set to 0.02 (b) error threshold set to 0.04

(c) Differential image with magnified errofg) Differential image with magnified error,
threshold set to 0.2 threshold set to 0.4

Figure 8.2: Modulation of the error threshold leads to increasing erthars reduced quality.

Unlike the previously rendered image, where no visible error could berdieted, these images prove
that the error threshold must be chosen carefully. Additionally, the gardes in both images due to
random positioning of the light sources durikd tree building. In default mode thed-tree builder

selects one of the children’s positions to be the representative light'sicates. This explains the
visible discrepancy between the differential images as it can be seen ia 82(a) compared to

figure 8.2(b).

66



8.1. BENCHMARKS AND EVALUATION

8.1.3 Using Lightcuts for Optimal Area Light Sampling

The second scene us@80, 1000, 10000 and 100000 individual lights to simulate an area light
source above the two killeroo models. One of the models uses diffusetimflend the other one
the Torrance-Sparrow microfacet model. Table 8.3 shows renddtsr@snumbers:

Point Lights| Shaded Points Shadow Rays Shadow Rays Per Sampleilmage Time
100 43.5k 2.911M 66,9 32.0s

1000 43.5k 2.471M 56,8 38.1s
10000 43.5k 2.475M 56,9 41.1s
100000 43.5k 2.474M 56,9 45.9s

Table 8.3: Scene2, rendered in a resolution of 200x200 and an emshiid of 0.01.

The results show that the lightcuts algorithm efficiently avoids to oversampl¢ladight. The num-
ber of light sources is irrelevant as long as its total count is sufficierdn B0 light sources are
sufficient to generate perfect soft shadows. Error bounds ettabbdgorithm to decide for itself how
far it needs to descend the light tree to select the right number of sampisss&n important proof
that the algorithms works as expected, because the number of shadmstayy almost the same. The
slight rise in rendering time is due to additional preprocessing effort. ltightbuilding uses up more
time while the pure rendering time almost stays the same.

(c) 10000 light sources

(a) 100 light sources

(b) 1000 light sources

Figure 8.3: The scene is rendered with an increasing number of lightesorepresenting an area light
above the models.

8.1.4 Using Lightcuts for Infinite Area Lights

My lightcuts implementation replaces the infinite area light by a dynamic light treehvitiherits
distant lights to represent the illumination situation. The method of sampling the &lLalready
been explained in chapter 6. | produced example renderings to demernbk&gros and cons of the
lightcuts method. Figure 8.4(a) shows the reference scene usirdpifight radiance map. It was
rendered with the direct lighting integrator using one eye ray per pixelbtaiooptimal reference
images, | gradually increased the number of samples until no perceptuad imoé&ge was left. Since

67



CHAPTER 8. RESULTS AND DISCUSSION

random sampling is not a good competitor to the lightcuts integrator, | also useidhportance
sampler plugin from Pharr and Humphreys [21] for benchmarking. BEtala of the results is very
subjective due to a light brightness scaling factor necessary to comeédhsaower heuristics used
by PBRT for sampling light sources and BRDFs. Nevertheless, the lighteitsod has the advantage
of automatically using the necessary samples for an intersection position torbmébted correctly.
In contrast to this, the number of samples used by importance sampling at@hraampling is
generally predefined. This enables lightcuts to generate almost pededist if the error threshold is
selected carefully. Importance sampling trusts in the predefined samplg wduch can be chosen
low for radiance maps using only one or few bright regions like the dayligtting in figure 8.4(a).
If the radiance map uses many bright regions, the same number of samplestwi#l sufficient for a
noise free image as seen in figure 8.6.

IAL-sampler | Shaded Points Shadow Rays IAL-Samples| Image Time
importance 38.4k 4.427M 100 46.9s
random 38.4k 68.631M 1000 306.8s
lightcuts 38.4k 13.014M variable 112.0s

Table 8.4: Difference in rendering time for a high quality image.

(a) Importance sampling (100) (b) Random sampling (1000) (c) Lightcuts (error thresh=0.01)

Figure 8.4: Two shperes rendered with different sampling techniqumeg the daylight radiance map.

IAL-sampler | Shaded Points Shadow Rays IAL-Samples| Image Time
importance 33.3k 3.716M 100 52.0s
lightcuts 33.3k 14.184M variable 118.8s

Table 8.5: Render statistics for lightcuts vs importance sampling.

Table 8.5 shows the necessary rendering time and shadow ray coutigoled point, which is equal
to the average number of light source samples for all available settingsxpested, the random
sampling method performs worst. It uses as many as 1000 samples to creadgariree from noise.
Importance sampling seems to be twice as fast as lightcuts for many tested Buenéo efficient
selection of bright regions and correct stochastic evaluation the imagerges to a good result with
fewer samples. This deficiency of the lightcuts’ IAL implementation will be exathinethe next

68



8.1. BENCHMARKS AND EVALUATION

(a) Importance sampling (100) (b) Lightcuts

Figure 8.5: Images rendered with importance sampling and lightcuts usinglillee gadiance map.

(a) Importance sampling (100) (b) Lightcuts

Figure 8.6: Magnified image area to show the weakness of importance samvjiling fixed sample
count. The contrast of both images was slightly increased to visualize tkeetiffe in the printout.

subsection.

8.1.5 The Sampling Weakness of the IAL

The median cut algorithm for light probe sampling generates samples in sagfiequal light energy.
This results in big dark regions represented by only a few lights. In sosesdhis leads to shadow
artifacts. If the error threshold it set too low, the lightcuts algorithm camiedérmine this error,
because itis introduced by multiple nodes. This can be seen as worsteaseio for lightcuts, since
it provides a stochastic error bound rather than an absolute one. Bigushiows a rendered image
with an error threshold set 2.

69



CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.7: The image shows the IAL's sample weakness due to high emeshtiid.

8.1.6 Visualizing the Size of a Cut

It is very interesting to examine how many light nodes are used to calculat@pnexamated illu-
mination of a pixel. Figure 8.8 and 8.9(b) show the number of shadow ragsfos scenes 8.1 and
8.9(a). As expected, bright parts of the scene use a large numbeaddvghays to avoid a big error
whereas darker parts use only few shadow rays.

Figure 8.8: Point light scene cut size

70



8.2. CONCLUSION

(a) 1AL scene

(b) 1AL scene cut size

Figure 8.9: Visualized cut size: brighter means more shadow rays.

8.2 Conclusion

The task for this thesis was to implement and analyse the lightcuts algorithm, vguichkanates the
illumination by clustering light sources. Additionally, a method is proposed tdledarge radiance
maps by using a dynamic light tree. | will summarize the topics examined:

e The lightcuts algorithm with basic functionality was implemented as a PBRT plug@iriple-
mentation was more complicated than initially expected due to PBRT'’s encapsulesigg. It
finally resulted in interface changes to its rendering core.

¢ For efficient generation of point light trees, a kd-trie cluster algorithra developed and im-
plemented. It also supports creation of representative lights and aibgustducture for each
light node.

e The theoretical background for lightcuts’ error estimation was examinkis. iicludes the

71



CHAPTER 8. RESULTS AND DISCUSSION

derivation of a bound on theos @ as well as the bound on three BRDF models. Therefore a
method for bounding the halfway vector had to be analysed and implemeihefin@ings can
be used as basis for future work.

e An adaptive light tree for infinite area lights was designed and implemented ti@mmedian
cut algorithm. The light tree supports four different flavors of samp#itjpm generation.

e Several mathematical obstacles were introduced by the dynamic infinite dre&rdig. Since
nodes represent light arriving from spherical patches, it was osgible to calculate the error
approximation with reasonable effort. The bounding cap and its generadisnleveloped and
implemented to ease computation.

The initial findings of the lightcut paper [28] could be confirmed. Rendgtime for scenes with a
large set of light sources is significantly reduced by using the lightcut®app. This works especially
well for clustered point lights as demonstrated previously in this chapteddmg time increases
logarithmic with the number of participating point lights due to the lightcuts behavierror driven
shadow ray usage. In contrast to this, the infinite area light performaasequite disappointing,
since | expected it to be always faster than importance sampling of the cadizap. This is mainly
due to the selected progressive energy median splitting algorithm, whickesalt in undersampled
regions. As a consequence, the general error threshold has toybeowservatively chosen to obtain
images yielding no visible error. Of course, this results in additional rémgléme. In comparison to
importance sampling the lightcuts method offers the benefit to generate neesegults independent
of the used radiance map. | think, it would be worth the effort to explorgtssibility to combine
both methods: i.e. using lightcuts to estimate the samples needed for a goodanesafterwards
sampling the radiance map by using multiple importance sampling. Presumable, thiexdwde the
problem with undersampled areas.

8.3 Future Work

There are several interesting directions left, which could be exploréuksiu My lightcuts implemen-
tation could be extended to improve anti-aliasing efficiency. This could be éasily, if intersection
information is used by all sample rays shot for one pixel. If the hit suriatiee same or extremely
similar in angle and material, it is possible to share the error information and eéduse time for
error estimation. Additionally, this also leads to a reduced shadow ray peusample. Most of the
time this is anti-aliasing for (almost) free - similar to other adaptive anti-aliasingitiges. The lim-
itation of maximum descent in the light tree is another idea to improve renderaegl spspecially
when it is more important to be fast than accurate. Priority queues caredeaasplit those nodes
first, which yield a high error. This should generate fast and accugatdts, because nodes producing
large possible error are replaced first. The most important extensionlighitits implementation is
the support of real global illumination. So far, diffuse inter-reflectionaspossible with direct light-
ing, which would be an interesting feature. Alexander Keller’s instaribsityf algorithm [15] could
be used to enable indirect lighting for diffuse materials. Due to its mode oftiperto distribute
point lights to generate indirect illumination, it fits the lightcuts approach piyfec

72



Appendix A

Source Code Snippets

A.1 Random Sampling of Spherical Patches

Listing 1 Random Sampling of Spherical Patches

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

SphericalSample (int xmin, int xmax, int ymin, int ymax

float u = RandomFloat () ;
float v = RandomFloat () ;

/!l find out the range for the yvalues
float kummin = mValskum[ymin];
float kummax = mValskum[ymax];
float kumdiff = kummax— kummin;

/l Scale v to cover the entire range
v x= kumdiff;

I/l Make sure the search with v starts at the correct position
v += kummin;

[/l apply the inversion method by finding the xth element inethcdf
float xptr = std::lowerbound (mValskum+ymin, mValskum+ymax+1, v);
int offset = (int) (ptr—m_Valskum—1);

I/l scale theta and phi to match spherical coordinates
theta = offsetx m_invheight x M_PI;
phi = (xmin + u % (xmax-xmin)) *= m_invwidth « TWOPI;

73



APPENDIX A. SOURCE CODE SNIPPETS

A.2 kd-Trie Generation

Listing 2 Random Sampling of Spherical Patches

© 00 N o g »~h W N P

B A B DA DWW W OW W W W W W WNNRNDNNDNDNDNNDNPRER B R R R R PR R
A W N P O © ® N O O B ® N P O © © N O 00 B W NP O © © N O 0~ W N P O

KdTreeLC<NodeData, LookupProsrecursiveBuild (uwint nodeNum,

int start, int end,
vector<const NodeDatax> &buildNodes) {

/I Create leaf node of kdtree

if (start + 1 == end){
nodes[nodeNum]. initLeaf ();
nodeData[nodeNum] =xbuildNodes[start];

return;
}
BBox bound;
/' Compute bounds of data from start to end
for (int i = start; i < end; ++i)

bound = Union(bound, buildNodes[+>p);

/!l Use the bounding box’'s maximum extent as split axis

int splitAxis = bound.MaximumExtent() ;

int splitPos = (start+end)/2;

I/l Sort elements by the selected split axis

std :: nth.element(&buildNodes[start], &buildNodes[splitPos],
&buildNodes[end], CompareNod&NodeData>(splitAxis));

/I create internal kdtree node
nodes[nodeNum]. init (buildNodes[splitPos}p[splitAxis], splitAxis ,NULL);
nodeData[nodeNum] =tintNodes[nextFreelntNode ++];

// Copy the bounding box into the internal nodes Data
nodeData[nodeNum]. bound = new BBox(bound);

if (start < splitPos) { // Recursive call for remaining left children
nodes[nodeNum]. hasLeftChild = 1;
u_int childNum = nextFreeNode++;
recursiveBuild (childNum, start, splitPos, buildNodes);
}
if (splitPos< end) { // Recursive call for remaining right children
nodes[nodeNum]. rightChild = nextFreeNode ++;
recursiveBuild (nodes[nodeNum]. rightChild , splitPos,
end, buildNodes);

}

/1 After children creation, create a representative light
NodeData:: buildRep(&nodeData[nodeNum], &nodeData[elddm+1],
&nodeData[nodes[nodeNum]. rightChild] );

74



A.3. LIGHTCUT ALGORITHM

A.3 Lightcut Algorithm

Listing 3 Lightcut algorithm for point light sources

1

2 gqueueu_int> workqupls; // Work Queue

3 gqueue<KDLightElx> lightqupls; // Light Queue

4

5 /!l Start evaluation if the point light tree exists

6 if ( pointLT ) workqupls.push(rootPL);

;

8 /I As long as potential nodes are left in the queue

9 while ( workqupls.size()> 0 ) {

10

11 /I recieve light

12 u_int nodeNum = workqupls.front(); workqupls.pop();

13 KDLightElx act = pointLT—>LookupLightEl( nodeNum );

14

15 /Il Use leaf nodes directly for lighting

16 if (! act—bound ) {

17 lightqupls .push( act );continue;

18 }

19

20 float esterror = estErrNPL( act, bsdf, p, wo, n );

21

22 /! negative error is recieved if light from a cluster is

23 I/l completely arriving from behind

24 if (esterror < 0.0 ) continue;

25

26 /Il the node is directly used for lighting if the error is smatll

27 /!l than the predefined error threshold

28 if ( esterror < errorthresh ){

29

30 lightqupls .push( act );

31

32 } else {

33 /Il Recieve the children of the node

34 u_intx cdrn = pointLT—getChildren (nodeNum);

35 if (cdrn[0] ) {

36 if ( cdrn[0] ) workqupls.push(cdrn[0]);

37 if ( cdrn[1l] ) workqupls.push(cdrn[1]);

38 delete[] cdrn;

39 } }

40

41 /Il Calculate direct lighting for collected light sources

42 while ( lightqupls.size()> 0 ) {

43 L_PL += estimateDirectLC( lightqupls.front{>repLight, p, n, wo,
bsdf);

44 lightqupls .pop();

45 }

75



76

APPENDIX A. SOURCE CODE SNIPPETS



Bibliography

[1] S. Agarwal, R. Ramamoorthi, S. Belongie, and H. Jensen. Strucinmeaitance sampling of
environment maps, 2003.

[2] Arthur Appel. Some techniques for shading machine renderingdidssén AFIPS Spring Joint
Computer Conferen¢c@ages 37-45, 1968.

[3] J. F. Blinn and M. E. Newell. Texture and reflection in computer geedramages.Communi-
cations of the ACM19(10):542-547, October 1976.

[4] James F. Blinn. Models of light reflection for computer synthesized mstulnSIGGRAPH
"77: Proceedings of the 4th annual conference on Computer grajgiidsnteractive techniques
pages 192-198, New York, NY, USA, 1977. ACM Press.

[5] P. Debevec and J. Malik. Recovering high dynamic range radiangs finam photographs,
1997.

[6] Paul Debevec. http://www.debevec.org/probes/.

[7] Paul Debevec. Rendering synthetic objects into real scenes:iBgidaditional and image-
based graphics with global illumination and high dynamic range photogr&uamputer Graph-
ics, 32(Annual Conference Series):189-198, 1998.

[8] Paul Debevec. A median cut algorithm for light probe sampling.SIGGRAPH '05: ACM
SIGGRAPH 2005 Posterpage 66, New York, NY, USA, 2005. ACM Press.

[9] Manfred Ernst. Photo-realistic rendering on programmable grapiaicbvare. Diploma thesis,
University of Erlangen-Nuremberg, Erlangen, July 2003.

[10] James A. Ferwerda, Sumanta N. Pattanaik, Peter Shirley, and [@emi@arg. A model of visual
adaptation for realistic image synthesis. SIGGRAPH 1996pages 249-258, 1996.

[11] Rob Shakespeare Greg Ward, Larson ShakespelRendering With Radiance: The Art And
Science Of LightingBooksurge Llc, 2004.

[12] Henrik Wann Jensen, Stephen R. Marschner, Marc LevoyPan¢ianrahan. A practical model
for subsurface light transport. IRroceedings of ACM SIGGRAPH 2Q02omputer Graphics
Proceedings, Annual Conference Series, pages 511-518, 2@l

77



Bibliography
[13] J.T. Kajiya. The rendering equation. ACM SIGGRAPH '86 Proceedings, vol,3tages 143—
150, 1986.

[14] A. Keller. Quasi-monte carlo methods in computer graphics: The gitibalination problem,
1995.

[15] Alexander Keller. Instant radiosity. IBIGGRAPH '97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive technigpages 49-56, New York, NY, USA,
1997. ACM Press/Addison-Wesley Publishing Co.

[16] Alexander Keller.Quasi-Monte Carlo Methods for Photorealistic Image SyntheéBiD thesis,
University of Kaiserslautern, Kaiserslautern, June 1997.

[17] Thomas Kemmer. Globale beleuchtungsberechnung in virtuellenrsz&tadent thesis, Uni-
versity of Erlangen-Nuremberg, Erlangen, September 2005.

[18] Tomas Moller and Eric HainesReal-Time RenderindA K Peters, Natick, Massachusetts, 1999.

[19] F.E. Nicodemus, J.C. Richmond, and J.J. Hsia. Geometric consideratidmomenclature for
reflectance. 1977.

[20] Michael Oren and Shree K. Nayar. Generalization of Lamberflsaance modelComputer
Graphics 28(Annual Conference Series):239-246, 1994,

[21] Matt Pharr and Greg Humphreys. Infinite area light source with itapoe sampling, 2004.

[22] Matt Pharr and Greg HumphreyRhysically Based Renderindg/lorgan Kaufmann Publishers,
2004.

[23] Wikipedia the free encyclopedia:. List of indices of refraction. http:iekipedia.org/wiki/List-
of-indices-of-refraction, December 31st 2006.

[24] Wikipedia the free encyclopedia:. kd-trie. http://en.wikipedia.org/wikitkd; January 4th,
2007.

[25] K. Torrance and E. Sparrow. Theory for off-specular otiga from roughened surface¥ournal
of the Optical Society of Americ&7(9):1105-1114, 1967.

[26] Bruce Walter. Notes on the ward brdf. Technical report PC&@®5Program of Computer
Graphics, Cornell University, April 2005.

[27] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greanldultidimensional lightcuts.
ACM Trans. Graph.25(3):1081-1088, 2006.

[28] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Baiehaél Donikian, and Don-
ald P. Greenberg. Lightcuts: a scalable approach to illumination. 24(3:1097, July 2005.

[29] Turner Whitted. An improved illumination model for shaded display.AldM vol. 23, no. 6
pages 43-349, 1980.

78



Erkl arung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Bengtanderer als der angegebe-
nen Quellen angefertigt habe und dass die Arbeit in gleicheraddicher Form noch keiner anderen
Prufungsbebrde vorgelegen hat und von dieser als Teil einéifiRrgsleistung angenommen wurde.
Alle Ausfuhrungen, die wrtlich oder sinnge@iiubernommen wurden, sind als solche gekennzeich-
net.

Ich bin damit einverstanden, dass die Arbeitoffantlicht wird und dass in wissenschaftlichen
Verodffentlichungen auf sie Bezug genommen wird.

Der Friedrich-Alexander-Univergit Erlangen-Nrnberg, vertreten durch den Lehrstuiat Graphis-
che Datenverarbeitung, wird ein (nicht ausschlie3liches) Nutzurtgsaedieser Arbeit sowie an den
im Zusammenhang mit ihr erstellten Programmen eiagert.

Erlangen, 08. Januar 2007
(Thomas Rudolf Kemmer)



